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ABSTRACT

In this work, for the first time, we demonstrate that computers can
automatically learn from observing the heuristic efforts of the last
four decades, stand on the shoulders of the existing Internet conges-
tion control (CC) schemes, and discover a better-performing one.
To that end, we address many different practical challenges, from
how to generalize representation of various existing CC schemes to
serious challenges regarding learning from a vast pool of policies
in the complex CC domain and introduce Sage. Sage is the first
purely data-driven Internet CC design that learns a better scheme
by harnessing the existing solutions. We compare Sage’s perfor-
mance with the state-of-the-art CC schemes through extensive
evaluations on the Internet and in controlled environments. The
results suggests that Sage has learned a better-performing policy.
While there are still many unanswered questions, we hope our
data-driven framework can pave the way for a more sustainable
design strategy.
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1 INTRODUCTION

Setting the Context: The task of controlling congestion on the
Internet is one of the challenging and active research topics in
the network community. The challenging nature of the congestion
control design on the Internet comes from some of its essential as-
pects, including access to imperfect information, large action space,
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Figure 1: Winning Rates of some CC schemes in scenarios of
Set I (left) and Set II (right) defined in Section 5

and its distributed cooperative game nature that manifests itself
in the form of TCP-friendliness and fairness. Early results during
the ’80s (e.g., [41]) showed that due to these immense challenges,
in practice, reaching the theoretical optimal operation points is not
feasible. These results motivated the community toward the use
of heuristic designs in the last four decades to control congestion
(e.g., [7,12, 14, 17-20, 28, 30, 34-36, 40, 45, 48, 58, 63]").

The Empty Half of the Glass: An important lesson from the
decades of CC design is that although these schemes might do a
good job in certain scenarios, they fail in other ones. As an illus-
trative example, following the setup described in more detail in
section 5, in a first set (Set I), we focus on the gained throughput
and end-to-end delay of some CC schemes in single-flow scenarios,
and in a second set (Set II), we examine their TCP-friendliness by
capturing their performance when they share the network with
TCP Cubic [35] flows (the default CC scheme in most of the plat-
forms). Generally, a policy achieving higher throughput and lower
delay in Set I is considered better. In Set II, a policy that can share
the link more fairly is regarded as a better-performing policy. Fig. 1
shows the percentage of times that a scheme’s performance is either
the best or at most 10% less than the best-performing scheme. As
expected, none of these schemes can always be the best-performing
scheme and interestingly, the schemes’ ranking in Set I is quite the
opposite of their ranking in Set II.

The Full Half of the Glass: Looking from a different angle, an-
other important fact is that every existing scheme, which embodies
a manually discovered policy mapping carefully chosen input sig-
nals/observations to carefully handcrafted actions, has some design
merits and manages to perform well, though only in certain scenar-
ios. That said, the vast pool of already discovered policies embodies
an accumulated knowledge gained throughout years of CC research
and that is why this pool of policies is precious?.

The Key Question: The main design approach used in the last
decades is to repeat the cycle of trying to manually (1) investigate
existing schemes, (2) learn from their pros and cons, and (3) discover

! Appendix A briefly overviews some of these schemes
2This work does not raise any ethical issues.
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another heuristic. However, the overabundance of existing schemes
combined with the empty half of the glass (the fact that each of these
CC schemes fails in some scenarios) sheds light on why this design
approach is inadequate, time-consuming, and unsustainable. That
is why in this work, we take a different design philosophy aiming
for automatically harnessing the precious pool of existing policies.
In particular, we target answering a refreshing key question that
can potentially pave the way for a more sustainable design strategy:

Q1. Can machines learn solely from observing the exist-
ing CC schemes, stand on their shoulders, and automatically
discover a better-performing policy?

1.1 Main Design Decisions

Why not Behavioral Cloning (BC)? When it comes to learning a
task from only observing the collected experiences of some experts,
the most straightforward approach is BC [56]. In BC, the goal is to
mimic an expert by learning from demonstrations of the expert’s
actions. Putting aside the well-known algorithmic restrictions and
issues of BC (see section 6.2), the main reason BC is not a good fit is
although we intend to learn from observing the existing schemes,
our key goal is to learn to surpass them, not to be similar to them.
Why not Directly Learning from Oracles? One may try to use
imitation learning to directly learn from the optimal behavior that
perfectly maps states to actions. However, there are different issues
with this oracular-based approach in the context of CC. For in-
stance, modeling CC in a general setting is intractable. That means
how to find the CC oracles in different environments for itself is
a very complicated task. Moreover, even when CC oracles are ap-
proximated in some simple settings, as we show later in section 6.2,
the final learned model cannot perform well in other scenarios.
Why not (Online) Reinforcement Learning (RL)? RL algo-
rithms are essentially online learning paradigms where agents iter-
atively interact with an environment, collect experience, and use
it to improve a policy/behavior. However, in practice, this online
aspect of RL brings some severe issues to the table, especially with
respect to effective generalization in complex domains [44, 46, 57].
In other words, effectively training an RL agent in complex domains
- with high-dimensional, nonlinear parameterizations - is very hard.
This becomes one of the biggest obstacles to realizing online RL
algorithms. This is also the case in the context of Internet CC. As we
show later in section 6.2, the state-of-the-art online RL algorithms
experience serious performance issues when utilized for long train-
ing sessions over a large set of environments. Moreover, online RL
CC schemes are generally clean-slate designs and in contrast to our
key goal, cannot cherish the existing pool of heuristic CC designs.
Our Approach: Considering these discussions, to answer Q1, for
the first time, we design a CC framework based on advanced data-
driven (offline) RL techniques. In a nutshell, our data-driven RL
framework enables exploiting data collected once, before training,
with any existing policy (section 2 provides background on data-
driven RL and its main differences compared with online RL). Using
our framework, we show that, indeed, computers can learn and
unveil a better-performing CC scheme by solely observing the
performances of the existing ones. We refer to finding such a policy
as mastering the task of CC and call our design Sage (of CC)
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Disclaimer: Note that mastering a task does not necessarily mean
achieving the optimal performance. A simple analogy is a chess
player who got the title of Master. She is not necessarily the perfect
chess player, but she has gained mastery of the game by achieving
overall good performance among other players [63]. That said, Sage
is not the optimal algorithm, but as our experiments (section 6)
indicate, overall, it performs better than the existing ones.

1.2 Some Challenges and Contributions

Realizing an effective data-driven framework to not only address Q1
but also successfully compete with state-of-the-art schemes in prac-
tice, faces various practical challenges.

1) Algorithmic Challenges: A clear key challenge is how to design
and utilize a system that can generate sufficient variations of various
policies, effectively learn from the generated pool of policies, and
gain a model that can compete with the state-of-the-art CC schemes
in practice.

2) General Representation: How the general representation for
inputs/outputs of our system should look so that it can cover differ-
ent existing CC schemes with their intrinsically different require-
ments, while it is not bound by them?

3) The Myth of "the More Training, the Better Result": In the
network community, there is a general impression that any ML-
based system (including RL-based ones) always will be improved
when trained for longer duration and in wider settings (more envi-
ronments). Consequently, if a learning-based design already exists
in a certain domain (such as CC), it is assumed that it is just a matter
of training it longer and wider to perform the task. However, as we
show in section 6.2, this is a wrong impression and indeed, how to
learn in wider and longer settings is one of the crucial obstacles
and challenges to realizing effective learning-based algorithms.

4) Training on General-Purpose Clusters: While general-purpose
clusters for running ML training tasks are more accessible, the state-
of-the-art ML-based CC schemes (e.g., Orca [9]) require a cluster of
customized servers (e.g., patched with new Kernel codes or with
access to underlying Kernel services for generating packets) to
effectively perform their training. Similar requirements greatly
complicate the training phase and can prevent people with no lux-
ury of accessing big custom clusters, to have tangible impacts in
this domain.

Contributions: Addressing these and similar challenges, our main
contributions in this paper are as follows.

e We design Sage (detailed in sections 3 and 4), the first data-
driven RL framework that, in contrast with its existing ML-
based CC counterparts, can be successfully trained over a
large set of networks even without the need for sending a
packet in those networks during the training phase (detailed
in section 5).

e We extensively evaluated Sage (detailed in section 6) and
demonstrated that, indeed, it is feasible to effectively learn
from the existing heuristic CC schemes. Our data-driven
CC framework presents a non-zero-sum design philosophy
cherishing, not alienating, the decades of heuristic designs.

e We made our data-driven framework publicly available to
facilitate future contributions of the community to data-
driven approaches.
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2 ONLINE VS. DATA-DRIVEN RL;
A BRIEF BACKGROUND

Online RL: RL is a framework for sequential decision making.
An RL agent aims to optimize user-specified reward functions by
actively interacting with the environment in a trial-and-error fash-
ion. The recent introduction of deep neural networks as effective
high-capacity function approximators into the RL and the excellent
results of this combination in a wide range of domains exponen-
tially have increased the popularity of RL.> On the other hand, one
of the key reasons for progress in deep learning (DL) is access to
more data [33]. However, the fact that RL is intrinsically an online
paradigm and requires interaction with the environment to collect
data during training remains one of the main obstacles to its wide-
spread adoption, especially in complex domains where effective
generalization requires large datasets [44, 46, 57]. Note that the
online aspect of RL does not mean that the data must be collected
necessarily in a live manner. For instance, in a simple game scenario,
areward, when defined in the form of a binary of win or lose, can be
collected only after an iteration of the game is played by executing
a policy. In other words, regardless of whether collecting a reward
occurs during an iteration of a game or after that, the online aspect
of the RL points to the fact that the agent should be able to interact
with the environment and collect more data during the training.
On-Policy and Off-Policy RL: In a more classic online RL setting,
the agent uses an on-policy fashion to collect data. In an on-policy
method, the agent runs a policy 7, collects the impact of 73 on the
environment, and then uses this newly collected data to come up
with 7z, 1. In contrast, in an off-policy setting, the agent can update
its policy by using not only the currently collected experiences, but
also the previously gathered ones. This significantly increases the
sample efficiency during the training, because as opposed to the
on-policy method, old experiences will not be simply discarded. Off-
policy RL maintains a replay buffer that stores collected samples
and reuses them for temporal difference learning with experience
replay. In the context of CC, for instance, Aurora [42] uses an
on-policy algorithm, while Orca [9] exploits an off-policy method
that enables it to utilize distributed training. Although off-policy
mitigates the data collection issue of online RL, it remains online
at its core and still shows severe issues when training spans a large
set of environments and long durations (e.g., see section 6.2).
Data-Driven/Offline RL: Data-driven algorithms have tremen-
dous success in different domains such as computer vision [43]

3For example, in the network community, RL has recently been used in different
domains from CC (e.g., [9, 42]) to buffer and network management (e.g., [70, 74]).

257

and natural language processing [23]. The produced models show
remarkable expressivity and general knowledge as they learn from
more and more data. Although it is more natural to incorporate
data in supervised settings, it presents difficulties in the online RL
paradigm [44, 57]. To address that, the novel data-driven/offline RL
paradigm is introduced. Simply put, data-driven RL aims to solve
the same problem that online RL tries to solve, but without the
need to interact with or collect data from the environment during
the training. Instead, data-driven RL only exploits data collected
once with any policy before training. Fig. 2 depicts differences
of data-driven RL and online RL. For a more detailed comparison,
readers can check existing surveys/tutorials (e.g., [46] and [57])

3 SYSTEM DESIGN OVERVIEW

This section overviews our data-driven CC framework. Later, in
section 4, we elaborate on its components. As Fig. 3 indicates, Sage
consists of three main blocks namely: (1) Policy Collector, (2) Core
Learning component, and (3) Execution block.

Policy Collector: The primary part of any data-driven system is
the access to data. In the CC context, data should indicate the behav-
ior of existing CC policies/schemes in different network scenarios.
The Policy Collector block is responsible for generating and main-
taining such a pool of policies. As we explain more in section 4.1,
instead of simply using a union set of various input/output signals
of different existing CC schemes, we exploit a general representa-
tion model for the input and output signals. In other words, instead
of digging into the details of each scheme and figuring out the exact
input signals that specific schemes use in their logic, we consider
individual CC schemes as black boxes that receive pure raw input
signals and somehow map them to general CC actions. So, suppose
a particular CC scheme uses an engineered input signal, which is
not directly part of our available raw input signals. In that case, we
assume that this engineered signal is just another hidden part of
the logic of that particular scheme. This enables us to generalize
existing policies and learn a potentially better one.

Core Learning Component: The output of the Policy Collector
block is a pool of {state, action, reward} records captured by monitor-
ing the behavior of different CC schemes in different environments.
Our Core Learning block aims to harness this precious pool and,
by utilizing advanced data-driven RL algorithms and techniques,
find a policy that can perform better than the existing ones. An
important feature of our learning block is that it does not try to
mimic the existing policies. On the contrary, as a data-driven RL
framework, it observes the pool of {state, action, reward} records
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as just a set of trajectories resulting from executing some arbitrary
(and not necessarily good) policies. Simply put, it tries not only
to learn from the actions of the existing policies that led to good
performances but also from the bad actions that led to poor perfor-
mances. This phase solely relies on the data collected before the
training. Therefore, during training, we do not require any new
interactions with any network environment. In practice, that gives
us a great advantage during the training phase. In particular, we
can run the training phase on the commercial general-purpose GPU
clusters in which patching the Kernel code or access to underlying
Kernel services for sending/receiving packets over custom-built
network environments are not usually allowed. We elaborate more
on the details of this block in section 4.2.

Execution Block: The output of the learning block is a policy that
the Execution block will use. This block represents the deployment
phase of Sage. Although a CC policy is the central part of a transport
layer, it is not the only part. For example, TCP provides other
functionalities either during the connection establishment phase or
during the life of a connection. So, to not reinvent the wheel, we use
these already existing blocks to complete the design and deployment
of Sage. To that end, we design and implement a minimal Kernel
module called TCP Pure that inherits the general functionalities of
a TCP scheme and provides new APIs to efficiently interact with
the gained policy by providing required input signals and enforcing
actions received from the policy. For the sake of space, we omit the
details of this block and refer readers to Sage’s source code [1].

4 SAGE’S DESIGN

4.1 Policy Collector

As Fig. 4 shows, the Policy Collector block collects a pool of CC
policies by employing three main components: (1) General Repre-
sentation (GR) Unit, (2) Kernel-Based CC Schemes, and (3) Network
Environment. In a nutshell, a network emulator uses TUN/TAP
interfaces to model different scenarios and provide the underlying
network environments carrying packets from a source to a des-
tination. The Kernel-based CC Algorithm (CCA) will control the
sending rates of the traffic. On top of that, the GR Unit employs Ker-
nel socket APIs and periodically records some general statistics of
the traffic and the action of underlying CC schemes. These recorded
stats make a pool of policies representing behavior of schemes over
different environments.

Input Representation: Any CCA has been designed considering
a set of so-called congestion signals. For instance, a loss-based CCA
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(e.g., Cubic [35] and NewReno [34]) uses the loss of packets as
the main input signal to handle congestion, while a delay-based
CCA (e.g., Vegas [17]) focuses on the delay of packets as the main
congestion signal. In general, congestion signals can even include
more complicated statistics such as the first or second derivatives
of the delay. That said, one key decision in the design of Sage
is that we favor simplicity and generalizability over engineered
input signals. There are a few main reasons behind this decision.
First, any handcrafted input signal intrinsically emphasizes certain
CC strategy, and in the end, increases the chance of learning only
strategies similar to those ones. Second, it is reasonable to think that
a better CC policy requires more diverse congestion input signals
potentially beyond the ones that are already used in the literature.
Third, one fundamental motivation for a learning-based CC design
is to let the system itself learn/figure out the importance of different
input signals. That said, the GR unit collects three general categories
of input signals: (1) delay oriented, (2) throughput oriented, and (3)
loss oriented signals. For each category, statistics such as average,
max, and min are collected. Later, in ablation studies of section 7.3,
we show the importance of collecting these statistics.

Another key design decision is centered around the choice of
granularity of these statistics. Although Sage’s logic performs peri-
odically (in small time intervals), the calculation of these statistics
should not necessarily happen with the same time granularity. In
particular, as discussed in section 7.4, we found out that indeed
larger granularity for the calculation of these stats greatly helps in
scenarios where other flows coexist in the network, while medium
and smaller granularity can be helpful in single-flow and variable
link scenarios. The rationale behind this is that objectives such as
TCP-friendliness that involve a long-term goal (such as achieving
on average a fair share of bandwidth when competing with other
flows) intrinsically depend more on the history of the network than
the current state of it. On the other hand, objectives with a more
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Figure 4: Policy Collector block
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myopic nature such as achieving high throughput or low delay for
the packets depend more on the current state of the network. So,
we use three different timescales to calculate different input signals.

Putting all together, Policy Collector represents the state of the
network at timestep t by a vector with 69 elements. Table 1 (Ap-
pendix B) gives more details of the input vector.

Output Representation: Generally, a CC scheme decides how
many packets should be sent to the network (indicated by a so-
called congestion window, cwnd). Different CC algorithms apply
different sets of actions to adjust their cwnd. For example, some
classic actions include "cwnd += m}n 5" "ewnd ”‘;"d " and
"ewnd += 1". On the other hand, the actions of a CC scheme can
happen at different time scales and magnitudes. That makes the
policy collection and learning intractable. To address this challenge,
instead of tying the output to how certain CC schemes perform
their actions, the GR unit employs a general output representation.
In particular, using provided Kernel APIs, the GR unit periodically
records the values of cwnd and represents the output of the under-
lying CC scheme at timestep t as a; = cwnd;/cwnd;—1. The GR
unit uses the ratio rather than the exact values of cwnd to better
generalize to different magnitudes of cwnd. In other words, the
rationale behind this design choice is that the exact values of cwnd
depend highly on the exact parameters of the network, while the
behavior of relatively increasing/decreasing them has a less direct
tie to the exact network setting. That said, we prefer to learn the
behavior not to simply and mistakenly memorize the exact values
in different settings.
Rewards: The reward is a scalar that quantifies the performance of
a CC scheme and it gives Sage a sense of how well different schemes
perform in different conditions. Instead of a single reward term (as
it’s the case for most prior work), we consider two separate reward
functions targeting two different design goals simultaneously. The
first goal which has a myopic nature centers around optimizing
the individual flow’s objectives such as high link utilization, low
delay, and low loss. Inspired by prior work and the well-studied
metric of Power [9], in single-flow scenarios, the GR unit assigns
the following reward term at timestep ¢:
(re = Ex )"
d:
where 7, I;, and d; are the delivery rate, loss rate, and average de-
lay observed at timestep t, respectively. Also, £ and k determine the
impact of the loss rate, and the relative importance of throughput
with respect to delay, respectively.

The second design goal, which has a more farsighted nature, is
to optimize for the TCP-friendliness. In particular, when a default
popular loss-based CC scheme coexists with a particular CC scheme
and shares the same bottleneck link, the GR unit aims to quantify
how well that particular CC scheme shares the bandwidth with the
loss-based scheme®. That said, equation 2 formulates this reward
where r; and fr; are the current delivery rate and the ideal fair
share of the bandwidth for that certain CC scheme. The intuition
behind Ry ; is depicted in Fig. 5.

Environments: To generate different network environments, we
use emulation and mainly control four key settings in the network:

R, = 1

“4In particular, due to fact that TCP cubic is the default CC scheme in most of the
platforms, we use Cubic as the default loss-based scheme.
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the link capacity, minimum end-to-end delay, bottleneck link buffer
size, and the existence/non-existence of competing Cubic flows. For
any given Env;, we run the CC scheme j, record the {input, output,
reward} vectors throughout time, and finally gain the Policy;;. We
make the pool of policies by repeating the procedure for all envi-
ronments and CC schemes. A very important point here is that the
policy collection phase happens only once and after generating the
pool, all environments are unplugged. So, during the training phase,
no interaction with any environment occurs. Another key point
is that Sage can utilize any labeled data and this is not restricted
to data collected from emulations. For instance, one can collect
data by running different schemes over real networks, though the
collected data should be labeled with proper rewards. That said, we
use emulation, because it provides a simpler mechanism to fully
control the network and have access to reliable rewards. Note that
except the network, no other parts are simulated or emulated. This
includes generating, sending, and receiving real packets that are
based on utilizing the Kernel code and APIs. That way, we are able
to capture different real phenomena such as extra delays due to the
Kernel, Ack accumulations, etc.

4.2 Core Learning Block

Architecture/Network: The pool of CC schemes forms a broad
spectrum of policies. Considering flexibility and generality, we do
not assume a predefined handcrafted mechanism in Sage’s model.
Instead, the model should learn the knowledge directly from the
data on its own. However, learning a data-driven policy is chal-
lenging due to the need for extracting meaningful features from
high-dimensional data, allowing the model’s decision to propagate
over time, and increasing the stability of training over extensive
data. To address these challenges, we design a deep architecture
as demonstrated in Fig. 6. Sage uses deep policy networks that
take input observation and output the CC action, with the spaces
described in section 4.1, to achieve high expressivity.

The input state s goes through the encoder, which processes the
high-dimensional raw observations and converts them into feature
embeddings. Since some CC heuristics use somewhat memory-
based decision-making mechanisms, we use Gated Recurrent Units
(GRU) [21] to capture sequence-level information from the data. By
using GRU, the agent can propagate its hidden states throughout
time. The output goes to another encoder, then a fully-connected
(FC) layer followed by two residual blocks. We use residual blocks [37]
together with Layernorm to reduce the difficulty of training large
models and increase stability [13, 47]. Since our goal is to learn from
multiple arbitrary policies, we employ a stochastic action distribu-
tion parameterized by a Gaussian mixture model (GMM) [26] in the
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last layer of the policy network. GMM helps improve the learning
by mitigating the chance of converging to a single arbitrary CC
heuristic. Finally, we obtain the output action a; by sampling from
m(als). Later, in ablation studies of section 7.3, we elaborate more
on the importance of these components.

Main Learning Algorithm: The goal of our agent is to use
the pool to learn a policy without interaction. Consider a Markov
decision process (MDP) M = (S, A, P,y,R), where S is the state
space, A is the action space, P is the environment dynamics, R
is the reward {Ry, R2}, and y is a discount factor. The objective
is to find a 7 (als) that maximizes the cumulative reward. The Q
function describes the expected cumulative reward starting from
state s, action a, and acting according to 7 subsequently:

T

Z Y'Ri(st.ar)

t

Q" (st,ar) =E @)

so=s,a0=as: ~P([st-1,ar-1),ar ~ 7w (-|st)

We let the pool of policies be ; ; Policy; ;. A CC behavior policy,
Jj executed in a network environment, i, will generate a trajectory ,
which consists of a sequence of transitions (s, ag, 7o, ..., ST> a1, 'T)-
We store the generated trajectories in the data buffer D. Our objec-
tive is to find a policy 7 that maximizes the expected cumulative
reward J using D:

J=E(sa)~ p[Q" (s,a)] 4)

One solution to extract the policy 7 is to take an arg max opera-
tion on Eq. 4, when Q and 7 are parameterized by neural networks.
However, simply using arg max leads to some well-known issues
such as overestimation issue [31]. When the agent tries to select
an action far from samples gathered in D, it causes the agent to
produce problematic values during the training, and the errors will
propagate through the Q function and the policy. Another issue
that will appear in the deployment phase of the learned congestion
control policy is that a bad cwnd could potentially deviate the agent
into bad situations leading to unusable behavior. To address these
challenges, we build our agent on top of a form of Critic-Regularized
Regression (CRR) [62]. We further diversify the pool to make Sage’s
policy more stable.

In short, we maintain two neural networks, one for policy 7y
with parameter 6 and one for the Q function Q,, parameterized by
w. The learning algorithm consists of two iterative steps: policy
evaluation and policy improvement. During the policy evaluation
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step, we want to learn Q,, to approximate the optimal Q function
with D. We minimize the temporal difference error according to
the following loss:

L(w) = E(S[,at,r[,st+1)~D [d(Qw(st,at), (rr + Qv (st41, oy (5£41))) ]
)
where d measures the distance between the current Q.,(s, a) and
the Bellman update through the target networks (6”, w’) as we use
a distributional version of the Q update to stabilize learning [15].
In the policy improvement step, the agent produces a new pol-
icy my based on Q., and D. The policy improvement procedure
encourages the agent to learn good actions from D and avoid tak-
ing unknown problematic actions. The objective can be written as
optimizing a policy to match the state-action mapping in D, while
regularized by the Q-function for better action:

arg maxE s g)~p [ f(Qw. 7, s, a) log w(als) ], ©)

where f is a filter for action selection. We adopt f = exp(A,,(s,a)) =
exp(Qw(s, a) — % 2 Qw(s, a))), with @/~ z(-|s). The intuition
here is that the agent is motivated to learn a better sequence of
actions from multiple behavior policies in multiple environments,
as presented in D.

Moreover, to further improve the policy and stabilize learning,
we use rich behavior policies to form D. In other words, we let D
include different trajectories regardless of whether reward values
associated with those trajectories are high or not. This makes the
optimization of Eq. 5 more stable, and as data coverage increases,
the estimation of the Q function can be improved. Since the learning
algorithm iteratively learns Q and 7, it will enhance the learning of
the policies. We later show in section 7.5 the effectiveness of using
rich policy pools to boost performance.

Putting all together, as a brief summary, first, we sample a mini-
batch size B of samples (s;, as, 1y, S;_H) from D. We update Q,, by
minimizing Eq. 5. Then, we update g by Eq. 6. We iteratively repeat
the above steps until the training converges to an acceptable policy.
Doing that, Sage can obtain a policy outperforming the pool of
behavior policies in D.

5 TRAINING SAGE

We implement Sage’s DNN and its Core Learning block using Ten-
sorFlow [2] and Acme [39]. We leverage the TensorFlow graph
operation, which allows the model’s inference to be made in real
time. This addresses the challenges of using a deep architecture
where model inference could become the bottleneck and ensure
that the output action will feed into the underlying kernel timely.
The General-Purpose Clusters: In contrast with the state-of-the-
art ML-based CC schemes (e.g., Orca) which require a large cluster
of customized servers (either patched with new Kernel codes or
require access to packet-level services) to effectively perform their
training phases [9], the data-driven RL aspect of Sage enables its
training sessions to be run over existing available general-purpose
GPU clusters. This greatly facilitates the training phase and enables
people with no luxury of accessing big custom clusters to still have
impacts in this domain. We need to highlight that after training,
Sage simply runs on top of a normal end-host, and discussions here
were solely about the training phase.

Pool of Policies: Our pool of policies consists of two main sets:
Set I and Set II. In Set I, we focus on the behavior of policies in
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single-flow scenarios with respect to gaining high throughput and
low delay, while in Set II, we collect their dynamics in the pres-
ence of TCP Cubic flows and their corresponding TCP-friendliness
scores. In particular, to observe the behavior of different schemes
in stable and changing conditions, Set I includes constant link ca-
pacity scenarios and scenarios in which link capacity changes. On
the other hand, Set II includes scenarios where a competing TCP
Cubic flow coexists with the CC scheme under the test. Overall,
more than 1000 different environments are covered®. For more
details and discussions about these sets, please see Appendix C.
Finally, we use 13 available Internet CC schemes in the Linux Ker-
nel: Westwood [20], Cubic [35], Vegas [17], YeAH [14], BBR2 [19],
NewReno [34], lllinois [48], Veno [30], HighSpeed [28], CDG [36],
HTCP [45], BIC [68], and Hybla [18] as the existing CC policies
in our pool. Overall, our pool includes more than 60 million data
points.

5.1 The Leagues, Scores, & Winning Rates

From now on, when we consider a certain group of CC schemes, we
often refer to them as a league. To report the results and compare
different schemes, we use a new terminology. In contrast to the
usually used throughput-delay graphs that provide a qualitative
comparison between the existing schemes, we employ a ranking
terminology inspired by the straightforward rankings used in the
games. In particular, we consider two main metrics and assign
scores to different schemes based on these metrics. We rank the
schemes in a certain scenario using these scores and identify so-
called winner schemes. Any scheme gaining a score in the range of
[0.9, 1] X the top score in a scenario, is considered a winner scheme.
Later, we calculate the winning rate of individual schemes (the total
number of wins over the total number of scenarios). Finally, we rank
the schemes based on their winning rates. For the sake of space,
we omit the discussions around the details of these definitions. For
more details, please check Appendix D and [3].

Single-Flow Scenarios: To reflect the throughput and delay per-
formance metrics of scheme ¢, we employ a form of Power defined
by Sp = % where r¢ and d. are the average delivery rate and the
average round-trip delay of c, respectively, and « is a coefficient
determining the relative importance of throughput and delay®. A
bigger value of S, indicates a better performance for c.
Multi-Flow Scenarios: To reflect the TCP-friendliness metric, in a
multi-flow scenario, we define S, = |fc — rc| where fc is the ideal
average fair share of ¢, when competing with the flows with the
default CC scheme, and r is the actual achieved average delivery
rate of c. A smaller value of Sy, indicates a better TCP-friendliness.

5.2 Performance During Training

Using the defined terminologies, we report the overall performance
of Sage during the training (done over a single GPU setting). In
particular, after every roughly 24 hours of training, we record the
gained model and collect its performance over all network environ-
ments used in Set I and Set II. Then, we compare Sage’s winning

>We use an improved/debugged version of Mahimahi [52], which appeared in [3], as
our base emulator.

Unless otherwise mentioned, we set a = 2. Please check Appendix D for a discussion
about other values of a.
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Figure 7: Performance of Sage during a 7-day training phase
in single-flow (right) and multi-flow (left) scenarios

rates against the league of CC schemes appeared in our pool of
policies. Fig. 7 shows the results during one week of training. After
5 days, Sage enters the TCP-friendliness region’, while surpass-
ing the winning rates of all existing schemes in the single-flow
scenarios. During the next days, Sage continues to increase its
performance gap with existing heuristic policies. These promising
results indicate that, indeed, machines can automatically learn from
the existing heuristic designs, while not being bound by them.
Notice: Note that, as mentioned in section 1, by design, Sage does
not aim to be the optimal solution. Instead, it is designed with the
aim of being better than existing ones. The fact that Sage does not
achieve a 100% winning rate in Fig. 7 can highlight this.

6 GENERAL EVALUATION

Here, we compare Sage with different state-of-the-art schemes
including the ones that did not appear in the pool®. In particular, in
section 6.1, we assess Sage on Internet and in sections 6.2 and 6.3
we elaborate on the league of ML-based and delay-based schemes
compared to Sage.

6.1 Consistent High-Performance

To examine the performance of Sage over complicated real networks
and assess how general its gained model is, we perform three sets
of evaluations: (1) Intra-continental, (2) Inter-continental, and (3)
Highly variable networks. We highlight an important fact that all
of these experiments were done after the model was learned and
fixed, so the model was not tailored to any of these scenarios.

For the first two sets, we respectively employed different servers
around the US continent (located in 16 different cities) and 13 dif-
ferent servers around the globe (outside of the US) representing
different characteristics (e.g., the minimum RTTs spanning from

"We take TCP NewReno’s winning rate in multi-flow scenarios as the base winning rate
indicating a TCP-friendly region, due to its pure AIMD logic often used for modeling
a simple general TCP flow.

8Because they do not provide APIs for collecting requried info. See section 8, for a
discussion on extending the pool.
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Figure 8: Normalized avg. delay (icons), 95%tile delay (end of lines), and avg. throughput in different settings

7ms to 237ms) and sent traffic over the Internet among these servers.
For the highly variable links, we emulated 23 cellular traces gath-
ered in a prior work [9] and sent traffic using different schemes. For
all these experiments, we repeat the tests five times and report the
averaged normalized delay (over minimum gained delay) and aver-
aged normalized throughput performance (over maximum gained
throughput) of different schemes (for more details on the setup
of the experiments please check Appendix G). Fig. 8 shows the
overall results for different schemes averaged over all experiments.
A sample set of the detailed version of these results is demonstrated
in Appendix H. To have more readable plots, we omitted the bad-
performing schemes.

Main Takeaways: Clearly, Fig. 8 illustrates the fact that each of the
existing CC heuristic schemes fails in some scenarios, though may
perform well in others. For instance, delay-based schemes (colored
green), perform well in highly variable scenarios, while failing in
Inter-continental ones. On the other hand, throughput-oriented
schemes (colored violet) can do a good job in Intra-continental sce-
narios, while failing in highly variable ones. However, Sage works
well in different complex unseen Internet scenarios and can outper-
form the heuristic schemes seen in the pool of policies. For instance,
compared to BBR2, it achieves about 2x lower averaged delay in
highly variable links, while in Inter-continental scenarios on av-
erage, it gains about 20% higher utilization. Also, Sage’s learned
policy can outperform the schemes that were not present in the
pool. For instance, compared to the state-of-the-art learning-based
scheme, Orca, Sage achieves 1.4x higher throughput, while having
similar delay performance in Inter-continental scenarios. In sum,
these promising results can suggest that Sage’s deep model is not
overfitted to specific scenarios during the training, and it can scale
well to complex real-world unseen environments. That said and
to be fair, we should mention that larger-scale in-field evaluations
and measurements are always needed before making any concrete
conclusions.

6.2 The League of ML-Based Schemes

To put the advantages of Sage’s data-driven RL framework in a
proper context, here, we compare sage with a league of ML-based
CC schemes including 13 ML-based counterparts. In particular, we
report the standings of different schemes in this league based on
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their winning rates in Set I and II. Fig. 9 shows the ranking of the
league of ML-based designs (the dynamics of some of these schemes
in some sample environments of Set II are depicted in Fig. 24).

1) Compred to BC: To elaborate on the issues of BC, we designed
multiple BC counterparts of Sage that use the same input signals
and are trained over the same duration and settings used for Sage
by optimizing the log-likelihood loss on different pools of policies.
In particular, we made four BC models: (1) BC-top (trained using
top schemes of Set I and Set II), (2) BC-top3 (trained using policies
of top three schemes of Set I and Set II), (3) BC (trained using all
13 schemes in Set I and Set II), and (4) BCv2 (trained using only
the winner policies of each particular scenario in each Set). All
different BC models perform poorly compared to Sage. This poor
performance is based on two reasons. First, CC decisions/actions
significantly impact future observations from a network. So, an
approach such as BC that only tries to imitate the state-action map-
pings observed during the training phase faces severe issues later
during the evaluation phase, where states are no more similar to
the previously observed ones. Second, different CC schemes some-
times use contradictory strategies. So, an approach that tries only
to clone these opposing strategies will fail in practice. This issue
reveals itself when the pool of policies includes more contradictory
policies, as in the BC model. These discussed issues can shed more
light on the challenges and complexities involved in the design of
Sage.

Remark: The strategy of imitating different heuristic schemes even
in a large set of environments is far from sufficient.

2) Compared to Online RL: To have a fair comparison with the on-
line RL approach, in addition to existing schemes (e.g., Aurora [42]
which uses a simple online on-policy RL agent and considers only
single flow reward and Genet [67] which attempts to improve Au-
rora by using curriculum learning), we designed an extra scheme
called OnlineRL. OnlineRL is the online RL counterpart of Sage
meaning it exploits the same input signals, employs the same re-
ward functions, is trained for the same duration and over the same
network environments of Set I and Set II, but in contrast with Sage,
it utilizes the state-of-the-art online off-policy RL. As mentioned
in section 1.1, online RL algorithms face issues when trained over
a large set of environments/tasks. The results of OnineRL scheme
clearly indicate that. Although OnlineRL can achieve an excellent
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Figure 9: The ranking and winning rates of ML-based designs
for the single-flow and multi-flow scenarios

winning rate in Set I, it significantly fails in Set I. Even with the
luxury of interacting with all environments during the training,
OnlineRL converges to an unbalanced model that works well only
in a particular setting and very badly in others.

Remark: Online RL algorithms face serious issues during the train-
ing of large complex sets, and it is very difficult to converge to a
policy that can, overall, perform very well.

3) Compared to Hybrid RL: Hybrid schemes, such as Orca [9]
and DeepCC [10], aim to achieve high performance by combining
a heuristic congestion control with online RL algorithms. In par-
ticular, our previous work, Orca, leveraging state-of-the-art online
off-policy RL algorithms becomes the runner-up scheme in Set I.
However, it gets about 2x lower winning rates compared to Sage
in Set II. To make sure that this performance gap is not due to
the different training settings or lack of a reward for multi-flow
scenarios, we replaced Orca’s reward with rewards used in Sage, we
retrained Orca over the same environments of Set I and II for seven
days. We call the gained model Orcav2. Performance of Orcav2
shows that optimizing for an extra reward over more large set-
tings and for a longer duration can confuse Orca. Once again, this
shows why a general impression about learning-based systems that
assumes training for more scenarios and longer duration always
boosts performance is wrong.

Remark: Even with the help of heuristic CC algorithms, online
RL schemes face severe issues during the training of large complex
sets in practice.

4) Compared to Imitation Learning: As an example of imitation
learning, Indigo [69] attempts to approximate optimal CC oracles
and then learn to imitate them in different settings. Although In-
digo’s single-flow performance is in third place, it falls to the last
three in Set II. To be fair, Indigo’s model was not trained over multi-
flow scenarios. So, following the suggestions of Indigo’s authors
we added multi-flow scenarios and retrained it for 7 days (we call
the new model Indigov2). As the results clearly show, a better per-
formance of Indigov2 compared to Indigo in Set I comes with a
great performance degradation (over 2X) in Set L

Remark: Imitation learning comes with its own issues, such as
the complexity of finding Oracles in different settings, unbalanced
models, and confusion over complex environments.

orca [ 18.00%
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Figure 10: The ranking and winning rates of delay-based
designs for the single-flow and multi-flow scenarios

6.3 The League of Delay-Based Schemes

Generally, Set I seems to be a perfect setting for revealing the ad-
vantages of delay-based CC schemes. Therefore, here we compare
performance of Sage with the league of delay-based schemes in-
cluding some recent ones: BBR2 [19], Copa [12], C2TCP [5, 7],
LEDBAT [58], Vegas [17], and Sprout [66]. Fig. 10 shows the rank-
ings of this league for both Set I and II (The dynamics of some of
these schemes in some sample environments of Set II are depicted
in Fig. 25). Sage shows great performance even when compared
to these designs in Set I. In Set II with its completely different dy-
namics, Sage ranks first too. The bottom line is that, with Sage’s
data-driven method, the agent acquires the skill of incorporating
two seemingly contradicting objectives (in Set I and II) in one model
by effectively distinguishing network scenarios. This enables Sage
to even surpass the performance of top delay-based schemes in
scenarios where they are mainly designed for.

7 DEEP DIVE
7.1 Sage & Handling Distributional Shift

While Sage has trained under a certain data distribution, when
evaluated, it can observe a different distribution. One of the main
subtle reasons for that is the fact that actions performed by any CC
scheme heavily impact the future observable states of the network.
In other words, even when evaluated in the same environment
where it has seen states corresponding to other schemes during
training, Sage’s observed states may differ from the dataset. To
shed more light on this and demonstrate that Sage can handle these
distributional shifts, here, we perform an experiment.

We choose an arbitrary environment from the pool (a step sce-
nario where the BW changes from 24Mbps to 96Mbps), rollout Sage
in this network for 30 seconds, and record the observed trajectories
at every timestep t. To quantify the differences between Sage’s
observed states and existing ones in the pool, we define and uti-
lize a metric called Distance. In particular, for the Sage’s transition
u = (sg,ar, sp+41) at timestep ¢, we calculate the pairwise cosine
distance’® between u and existing vectors in the pool, and define
the minimum of these pairwise distances as the Distnace of u. As
the baseline, we run two other schemes (Vegas and BC) under the
same setting and obtain the Distance of their trajectories. Fig. 11
shows the CDF of them.

Vegas is already one of the schemes in the pool and its new
runs are expected to be similar to its previous ones. That is why

The cosine distance of vectors « and v is defined as 1 — where u - v denotes

u-o
[[allloll >

the dot product of u and v.



ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

F | 50 Set |l ===
3
o8y | | g Set | m—
J 240
06 i € 50
o o
Coal ¢ —-= Vegas 'EZO
| — sage £
¢ PO QL P s SP
0.0 ) AV T DTS NN &
0.0 02 04 056 08 S & N S S &
Distance Q\Q [©) <& & Ny @

Figure 11: Distance’s CDF Figure 12: Ablation study

most of the time, the Distance values of Vegas are very low. On the
other hand, BC and Sage observe different trajectories compared
to the dataset (with 65%tile values of 0.2 and 0.45, respectively).
This verifies that observed trajectories during the evaluation differ
from the dataset. As discussed in section 6.2, this distributional shift
greatly impacts BC and leads to its poor average throughput and
delay (1.2Mbps, 43.2ms) performance. However, Sage effectively
manages this shift and achieves the performance of (54.8 Mbps,
69.5ms) even higher than Vegas (36.1 Mbps, 76.1ms).

7.2 (Dis)Similarity of Sage to Other Schemes

Sage is trained solely by observing existing heuristics, so it might
be natural to think that its model might have been biased toward
certain schemes in the pool. To investigate that and illustrate that
it is not the case, we choose eight different environments and send
traffic using different CC schemes and gather trajectories of dif-
ferent schemes in the form of (s, ar, s;+1) vectors. To quantify the
similarity between schemes, we use cosine similarity index defined
as m for two given vectors u and v. In particular, for any
scheme A, we calculate the cosine similarity of Sage’s trajectories
to A’s counterpart trajectories in that environment and calculate
the average of these values over all trajectories of Sage. We call
the gained value the Similarity Index of Sage to A (with 1 showing
perfect similarity). Results are reported in Fig. 13 (each row presents
the Similarity Indices in one environment).

Considering these different environments, Fig. 13 highlights
different points. The main one is that Sage’s model is not biased
toward one or even a certain few schemes in the pool, because
the schemes with the highest Similarity Indices change widely in
different environments. In other words, each of these 13 schemes
has impacted the final model to different degrees. Moreover, the
value of the highest Similarity Index itself changes in different
settings. That can be due to the fact that Sage is not bound by these
schemes in these environments and has learned a policy that is not
simply a cloned version of them in different settings'”

7.3 Ablation Study

Here, we perform ablation studies to assess the importance of vari-
ous components of Sage including the role of main blocks in its NN
and the impact of different input signals. To that end, we retrain
6 more models under the same 7-day training regime and report
their performance in Fig. 12.

Value of Different Input Signals: To elaborate on the role of vari-
ous input signals, we removed three different sets of signals leading

10%e leave a more detailed analysis of Sage’s similarity/dissimilarity to other schemes
for future work.
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Figure 13: Sage’s Similarity Indices to different schemes on
eight random env. (each row represents an env.)

to these models: (1) no Min/Max model [removing all min/max
statistics from input leading to a vector of 33 elements as input],
(2) no rrtVar model [removing rates and variances of RTT values
(rows 23-40 in Table 1)], (3) no Loss/Inf model [removing loss and
inflight information (rows 41-58) in Table 1)]. Fig. 12 clearly shows
removing different parts of the input signal degrades the perfor-
mance. In particular, loss and RTT variance-related information are
key in multi-flow scenarios. This can be enlightening info even for
heuristic CC designers!

Sage’s NN Architecture: To highlight the importance of Sage’s
NN architecture, we made three other variations leading to these
models: (1) no GRU model [by removing the GRU block], (2) no
Encoder model [by removing the encoder block right after the
GRU]J, (3) no GMM model [by replacing the GMM unit of the last
layer with multivariate normal distribution]. As it is clear, each of
these components helps increase the effectiveness of training from
the pool of existing policies. In particular, GRU block plays a crucial
role for Sage. This is based on the fact that GRU works as a form of
memory to capture sequence-level information from data.

7.4 Impact of Input Representation

Now, we investigate the importance of different time granularities
used by the GR block to generate the input vector. To that end, we
vary the granularity of calculating input statistics and reconstruct
three pools: Small [observation window of 10], Medium [obser-
vation window of 200], and Large [observation window of 1000].
Using these new pools and the same 7-day training regime, We
gain 3 models: Sage-s, Sage-m, and Sage-1, respectively, and report
their performance compared with Sage in Fig 14. To provide more
insight, we employ a visualization technique (t-SNE algorithm [61])
to visualize the output of the models’ last hidden layer when evalu-
ating them over seven environments sampled from Set II (Fig. 16).
Results highlight different points. First, when a long-term goal
(TCP-friendliness) is considered, inputs that reflect the history of
the network more lead to higher winning rates. This is why the
winning rate in Set II for Sage-1 is much better than Sage-m and
Sage-s. Also, visualization results of Fig. 16 confirm that Sage-s and
Sage-m have a hard time distinguishing multi-flow environments,
while Sage-1’s hidden representations can effectively separate them.
Second, results of Set I suggest that satisfying myopic objectives
depends more on a balanced combination of the current state and
the network history. Third, the distribution of the winning rate in
Set I indicates that there are still scenarios in which each of these
granularities can benefit the system. In particular, even Sage-s can
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Figure 16: The t-SNE [61] representation of the last hidden
layer of Sage-s (left), Sage-m (middle), & Sage-1 (right) for
seven diff. env. chosen randomly from Set II

still be a winner in about 20% of cases in Set I. Fourth, although the
setup was very much in favor of the other three rivals, Sage still
performs very well (consider that the total number of inputs for
each of these 3 rivals (= 33 signals) is much smaller than Sage (= 69
signals), while the duration of training was equal for all of them).

The bottom line is that for learning a better policy, it is critical
to provide the agent with proper general input representations
for effectively extracting valuable knowledge from a given high-
dimensional input.

7.5 The More the Merrier

In this section, we highlight two points: (1) learning from only the
best policy is not sufficient and (2) as a data-driven approach, Sage
can benefit from a more diverse pool of policies. To that end, we
retrain Sage with a couple of alternative pools of policies. For the
first pool, we only include the top-ranked schemes of Set I and II
(Vegas and Cubic) and name the gained model Sage-Top. For the
second pool, we include the four top-ranked schemes of Set I and II
({Vegas, BBR2, YeAH, Illinoise} and {Cubic, HTCP, BIC, Highspeed})
and name the gained model Sage-Top4. Fig. 15 shows the results
for these models compared to Sage. Even with the same number
of data points, the model trained using a smaller number of policy
variations performs worse than the one that utilized a more diverse
pool during the training. This clearly shows the two mentioned
remarks. The key here is that Sage benefits from observing more
diverse policies, even schemes that do not perform well overall.

7.6 Sage’s Behavior in Three Sample Scenarios

To provide more insight, we demonstrate how Sage reacts in three
sample environments: 1) when the link capacity suddenly doubles
(24Mbps to 48Mbps), 2) when the link capacity suddenly halves
(48Mbps to 24Mbps), and 3) in the presence of a Cubic flow (24Mbps
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Figure 17: Sage’s sending rate, one-way packet delay, and
cwnd in 3 different sample scenarios: (row #1) a sudden in-
crease in link capacity, (row #2) a sudden decrease in link
capacity, and (rows #3 & #4) competing with a Cubic flow.

link). For these experiments, we set the minimum delay of 20ms and
bottleneck buffer size of 450KBytes (=300pkts). Results of sending
rates, cwnd, and one-way packet delays of Sage across time are pre-
sented in Fig. 17. The results highlight some interesting behaviors
of Sage. For example, the changes in Sage’s cwnd in the 1st and 2nd
scenarios can suggest that Sage has learned a probing policy for
discovering available bandwidth without causing excessive delay
increases. In these two scenarios, after settling down on a proper
cwnd value, Sage keeps performing a somewhat 5-second periodic
probing. In fact, this probing helps it discover sudden available
link capacity in 1st scenario. Interestingly, when Sage detects extra
available capacity at t=30s, instead of conducting another 5-second
probing, it continuously increases the sending rate until the link
is fully utilized. Subsequently, it appears to revert to the probing
phase. On the other hand, in the 3rd scenario realizing that it is not
the only flow in the network, Sage behaves differently compared
to the other two scenarios and attempts to compete fairly with a
throughput-oriented scheme.

Notice: Note that these descriptions should not be interpreted as
the exact representation of Sage’s learned policy. The learned policy
appears to be more complicated than that and varies in different
scenarios. That said, we leave a detailed analysis of Sage’s behavior
for future work.

7.7 More on Dynamics of Sage

Fairness: How Sage behaves in the presence of other Sage flows?
To investigate this question, we send traffic from our server to a
randomly selected remote server on GENL Then, every 25 seconds,
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we add another flow destined for the same server and measure
the throughput of each flow over a 2-minute period. We repeat
all the runs three times. Fig. 18 shows the fairness dynamics of
Sage. Also, to put the results in a proper context, the fairness aspect
of other schemes in the same setting is reported in Fig. 27. Sage
has not trained over any scenario targeting directly the fairness
objective. However, it still gains very good fairness property. This
comes from the fact that fairness is a relatively simpler objective
than TCP-friendliness, because the rival flows use the same CC
strategy. A policy that has learned to compete fairly with aggressive
loss-based schemes (while minimizing its delay when it is alone)
will most likely perform a good job while competing with its own
family of flows.
TCP-Friendliness: In the pool of our policies, we had two-flow
scenarios. So, to investigate the performance of Sage’s learned
policy in other scenarios, we increase the number of competing
Cubic flows. In particular, we emulate a 48Mbps, 40ms mRTT, and
BDP buffer size bottleneck, share it between a Sage flow and three
(and in another case, seven) more Cubic flows, and measure the
throughput of each individual flow over a 2-minute period. Fig. 19
shows the results. Sage’s performance can be appreciated more
when the results of other schemes in the same setting are also
considered. To that end, we report the results of some other schemes
in Fig. 28 in Appendix J. Although Sage has not seen the behaviors of
any existing policies in the presence of a large number of competing
Cubic flows, the learned policy performs well and adapts to these
new settings.

For more deep dive experiments including very low impact of
different AQM schemes on Sage’s performance and its performance
frontier behavior compared to the pool, please check Appendix E.

8 LIMITATIONS & FINAL NOTE

Extending the Dataset: Sage provides more flexibility for train-
ing a CC policy by decoupling data collection and policy learning.
In principle, Sage can train on any data gathered from not only
heuristic schemes but also ML-based ones. The only requirement
is that the Policy Collector should have access to general APIs to
collect statistics of the underlying CC scheme. However, unlike
kernel-based implementations, user-space CC implementations (al-
most most of the academic ML-based CC schemes) do not provide
such APIs. That said, we suggest that CC designers add a simple
kernel-like socket option API in their codes. Such a simple improve-
ment will enable Sage (and similar future schemes) to extend their
pool. That way, Sage can also learn from your ML-based or heuristic
design and even from CC schemes executed on particular network
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scenarios that are hard to simulate/emulate or in which safety is a
major concern.

Simplifying the Design and Lowering the Overhead: Our cur-
rent model uses a deep architecture to learn a better-performing
policy. This deep model, which runs in user space and real-time,
can lead to CPU overhead. Although the added overhead is much
smaller than most of the existing ML-based and even heuristic CC
schemes, further optimizations are required before it can be utilized
in practice!!. That said, there are orthogonal active lines of work
both in machine learning and network communities focusing on
reducing the overhead of ML-based systems, including pruning dur-
ing training to reduce redundant units of neural networks [29, 73],
using quantization [22], knowledge distillation [38], and using a
light deployment of neural networks for Kernel datapaths [72]. The
bottom line is that these orthogonal efforts can help reduce the
overhead of deploying NN-based systems, including Sage.
Generalization and Performance Guarantee: Although we
showed that Sage’s learned policy can keep its competitive per-
formance in various complex scenarios tested including on the
Internet, how general Sage’s policy is, remains a question. This
question and, in general, how a DRL/data-driven DRL model gen-
eralizes is still a very active research topic [32]. That said, some
recent works use techniques such as curriculum learning to better
train RL-based designs in practice (e.g., [67]). On the other hand,
some other works focus on theoretical aspects and study provable
generalization in RL, though they require strong assumptions such
as a discrete action space, a low-dimensional input, or a linear
model [25, 49]. The results of works on this track can also shed
more light on Sage’s generalization property.

Analysing Learning-based CCs: Why exactly a DNN makes a
specific decision as it does? This is also another fundamental ques-
tion that has not yet been fully answered. That said, some recent
works propose tools for analyzing DNN (e.g.,[27]) or building more
interpretable models (e.g.,[51]). Works on these orthogonal tracks
can help to analyze ML-based systems such as Sage easier, though
applying these or similar methods to complex deep architectures
or high-dimensional inputs is not straightforward.

Final Note: A pure data-driven approach enables Sage to "Stand
on the shoulders of giants" and demonstrate that machines can
automatically exploit the vast pool of existing heuristic Internet CC
schemes to discover better-performing ones. Sage by no means is
the final solution to CC design, but we hope that it paves the way for
a more sustainable way of designing Internet CC schemes and also
show that learning-based systems are not necessarily archenemies
of heuristic ones.
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Appendices

Appendices are supporting material that has not been peer-reviewed.

A A PLETHORA OF SCHEMES

General CC: End-to-end CC algorithms typically compute a con-
gestion window to determine how many packets should be sent to
the network at the sender side. TCP-Reno [40] and TCP-NewReno [34]
use the famous loss-oriented AIMD mechanism to adjust conges-
tion windows. HighSpeed TCP[28] targets large BDP networks.
TCP Hybla [18] focuses on networks with large intrinsic RTTs,
such as satellite networks. Delay-based CC algorithms, such as TCP
Vegas [17] and LEDBAT([58] use delay as a key congestion signal.
Compound TCP [60] and TCP-Illinois [48] combine loss and delay
signals to perform a better congestion management. Some other
CC algorithms attempt to use certain models for the network and
derive the target sending rates based on that. As an example of
these white-box approaches, BBR2 [19] models the network with
a simple single bottleneck link and estimates the BDP by contin-
uously measuring the minimum delay and maximum throughput
of the network. Copa [12] targets low-delay communication while
attempting to be competitive with loss-based CC schemes in prac-
tice. All these schemes, in the end, turn out to perform well only in
specific scenarios and fail in others.

Learning-based CC: Learning-based CC schemes let the ma-
chine generate a proper response to the congestion in the network.
As an early attempt at computer-generated CC, Remy [65] uses a
policy optimization that iteratively searches for the optimal state-
action mapping table. A follow-up work [59] uses Remy as a tool
to discuss the learnability aspect of CC schemes in more settings.
RemyCC schemes, as already shown in different works, degrade
dramatically when the evaluation scenarios diverge from previ-
ously trained networks, because Remy relies on very accurate as-
sumptions about the underlying network and competing traffic.
Indigo [69] uses imitation learning from oracles, which requires
explicit knowledge and assumption of the underlying network to
generate a CC response. It is unclear how to define the oracle consid-
ering more complicated network scenarios. Recently, some works
have leveraged modern DRL for learning CC policies. Aurora [42]
learns policy using vanilla RL, which requires extensive online ac-
cess to the environments. Orca [9], first to highlight the practical
issues of clean-slate learning-based techniques such as overhead,
convergence issues, and low performance over unseen network
conditions, combines heuristic CC designs with DRL and proposes
a hybrid pragmatic system to address those issues. DeepCC [10]
employs the same hybrid design philosophy, but instead of target-
ing to be a new CC scheme, it introduces a DRL-driven CC plug-in
that automatically boosts the performance of a given CC scheme in
highly variable cellular scenarios without requiring to change the
underlying CC scheme. MOCC [50] uses RL to adapt to different
application objectives. Among other works, some (e.g., Vivace [24])
utilize online-learning for CC. We have compared Sage in detail
with most of these learning-based schemes in section 6.

Specialized CC: Some CC algorithms focus on specific net-
works with their unique characteristics. Sprout [66], Verus [71],
NATCP [8], C2TCP [7], and ExLL [55] focus on cellular networks.
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Table 1: Sage’s input vector and a short description of its elements

Index Input Statistic Description Index Input Statistic Description
1 srtt smoothed RTT (sRTT) cal. by Kernel 36 rtt_var_m.min min(rtt variance) over Medium time wnd
2 rttvar variance of SRTT 37 rtt_var_m.max max(rtt variance) over Medium time wnd
3 thr current delivery rate 38 rtt_var_lavg avg(rtt variance) over Large time wnd
4 ca_state socket ca state, e.g., OPEN, LOSS, etc. 39 rtt_var_Lmin min(rtt variance) over Large time wnd
5 rtt_s.avg avg(srtt) over Small time wnd 40 rtt_var_l.max max(rtt variance) over Large time wnd
6 rtt_s.min min(srtt) over Small time wnd 41 inflight_s.avg avg(unack bytes) over Small time wnd
7 rtt_s.max max(srtt) over Small time wnd 42 inflight_s.min min(unack bytes) over Small time wnd
8 rtt_m.avg avg(srtt) over Medium time wnd 43 inflight_s.max max(unack bytes) over Small time wnd
9 rtt_m.min min(srtt) over Medium time wnd 44 inflight_m.avg avg(unack bytes) over Medium time wnd
10 rtt_m.max max(srtt) over Medium time wnd 45 inflight m.min min(unack bytes) over Medium time wnd
11 rtt_Lavg avg(srtt) over Large time wnd 46 inflight_m.max max(unack bytes) over Medium time wnd
12 rtt_Lmin min(srtt) over Large time wnd 47 inflight_lavg avg(unack bytes) over Large time wnd
13 rtt_l.max max(srtt) over Large time wnd 48 inflight_l.min min(unack bytes) over Large time wnd
14 thr_s.avg avg(thr) over Small time wnd 49 inflight_l.max max(unack bytes) over Large time wnd
15 thr_s.min min(thr) over Small time wnd 50 lost_s.avg avg(losts bytes) over Small time wnd
16 thr_s.max max(thr) over Small time wnd 51 lost_s.min min(losts bytes) over Small time wnd
17 thr_m.avg avg(thr) over Medium time wnd 52 lost_s.max max(losts bytes) over Small time wnd
18 thr_m.min min(thr) over Medium time wnd 53 lost_m.avg avg(losts bytes) over Medium time wnd
19 thr_m.max max(thr) over Medium time wnd 54 lost_m.min min(losts bytes) over Medium time wnd
20 thr_lLavg avg(thr) over Large time wnd 55 lost_m.max max(losts bytes) over Medium time wnd
21 thr_l.min min(thr) over Large time wnd 56 lost_Lavg avg(losts bytes) over Large time wnd
22 thr_l.max max(thr) over Large time wnd 57 lost_L.min min(losts bytes) over Large time wnd
23 rtt_rate_s.avg avg(rtt_rate) over Small time wnd 58 lost_l.max max(losts bytes) over Large time wnd
24 rtt_rate_s.min min(rtt_rate) over Small time wnd 59 time_delta time elapse b.w. two timesteps norm. to mRTT
25 rtt_rate_s.max max(rtt_rate) over Small time wnd 60 rtt_rate ratio of two recent rtts
26 rtt_rate_m.avg avg(rtt_rate) over Medium time wnd 61 loss_db current rate of newyly lost bytes
27 rtt_rate_m.min min(rtt_rate) over Medium time wnd 62 acked_rate normalized rate of Ack reception
28 rtt_rate_m.max max(rtt_rate) over Medium time wnd 63 dr_ratio ratio of two recent delivery rates (thr)
29 rtt_rate_lavg avg(rtt_rate) over Large time wnd 64 bdp_cwnd ratio of current BDP over current cwnd
30 rtt_rate_l.min min(rtt_rate) over Large time wnd 65 dr delivery rate calculated by Kernel
31 rtt_rate_l.max max(rtt_rate) over Large time wnd 66 cwnd_unacked_rate ratio of unack packet over sent ones
32 rtt_var_s.avg avg(rttvar) over Small time wnd 67 dr_max maximum delivery rate
33 rtt_var_s.min min(rttvar) over Small time wnd 68 dr_max_ratio ratio of two adjacent dr_max
34 rtt_var_s.max max(rttvar) over Small time wnd 69 pre_act previous action
35 rtt_var_m.avg avg(rttvar) over Medium time wnd

These solutions exploit the knowledge of the specific characteristics
of target networks during their design phase to better optimize their
solutions to them. DCTCP [11], D3 [64], and HyLine [6] are other
examples from this category that rely on data center networks’
characteristics, such as their single-authority nature.

B SAGE’S INPUT SIGNAL

Table 1 shows the 69 input signals used by Sage and a brief descrip-
tion of them.

C MORE ON SETIAND SET 11
C.1 Setl

This set consists of single-flow scenarios where schemes are mon-
itored with respect to S, score that reflects their throughput and
delay performance. The Set I includes two main classes of scenarios:
(1) the flat scenarios and (2) the step scenarios.

The Flat Scenarios: This set of scenarios represents general wired
scenarios on the Internet. As its name suggests, it includes wired
links with constant/flat bandwidths throughout the experiments.
The ranges of BW, minRTT, and queue size (gs) are [12, 192] Mbps,
[10,160]ms, [% 16]XBDP, respectively.

The Step Scenarios: The flat scenarios alone cannot grasp the
performance of CC schemes over a more dynamic network. So
to answer questions such as how a CC policy behaves when BW
reduces or increases suddenly, we bring up the step scenarios. In
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these scenarios, we start with a given network BW (BW;) and after
a specific period of time, we change the underlying BW of the
network to m X BW;. The m value is chosen from (0.25, 0.5, 2, 4)
list. We observed that for large values of BW, Mahimahi’s overhead
increases to a point that it tangibly impacts the results. To prevent
these unwanted impacts, when changing BW, we always choose to
be under 200Mbps. This means that if BW; is 96Mbps, we choose
m < 4. The range of other parameters is similar to flat scenarios.

C.2 Setll

This set provides scenarios for observing the TCP-friendliness as-
pect of Internet CC policies. To that end, we let TCP Cubic, which
is the default CC scheme in most platforms (including Linux, Win-
dows, and macOS), compete with the CC scheme under the test for
accessing a shared bottleneck link and we capture the behavior of
schemes with respect to Sy, score. Similar to the Set I, the three
main network parameters are changed to make different scenarios.
The ranges of minRTT and BW values are similar to Set I. In addi-
tion, we at least let the bottleneck link have 1XBDP buffer size to
be able to effectively absorb more than one flow during the tests.
In particular, we choose gs from [1, 16]xBDP range.

In a general Internet scenario, with a good probability, we can
assume that a new incoming flow will observe flows controlled by
the default CC scheme on the bottleneck link. This comes from the
definition of a default CC scheme and its property of being used
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by the majority of flows. Therefore, we let TCP Cubic come to the
network earlier than the CC scheme under the test. When buffer
size increases, generally, it takes more time for flows to reach the
steady state (if any). In our experiments, we observed that reaching
a fair-share point may take more than a minute (even when both
flows are Cubic flows). So, in Set II, we let flows send their packets
for 120s to make sure that the results can present meaningful TCP-
friendliness scores.

D THE NOTION OF SCORES & WINNING
RATES

A more classic way of looking at who should be called the winner in
a certain scenario may lead us toward recognizing the CC scheme
with the best score gained throughout a scenario as the winner
in that scenario. However, there are two issues with this way of
identifying a winner.

First, since the scores defined in section 5.1 (S, and S¢,) are
Real numbers, their absolute values can differ slightly for two CC
schemes. So, if we simply perform a mathematical comparison
between scores, these slight differences can impact the choice of
the winner in a scenario. That said, instead of picking the CC
scheme with the best score as the winner, we pick all CC schemes
with scores less than 10% worse than the best score as the winners
of a scenario. In other words, any scheme with at most 10% lower
performance than the best-performing scheme is included in the
winner list of that scenario.

Second, simply assigning a number to the performance of a
scheme over an entire scenario and then comparing these numbers
together to decide the winners may smooth out the important
differences among the CC schemes. For instance, how fast CC
schemes can react to a sudden change in the network may not be
visible in an overall score of the scheme over a longer period. To
address this issue, we calculate the score of a scheme in separate
intervals throughout the experiments and instead of one score,
assign four scores corresponding to the performance of the scheme
in four different intervals throughout the test. Now, comparing the
scores of a certain interval for all schemes can get a better sense of
the performance of different schemes.

Putting all together, we compare the scores of all CC algorithms
over a certain interval of a certain scenario and pick the best-
performing schemes (considering the 10% winning margins) as
the winners. Then, we sweep over all intervals and scenarios.

D.1 Rankings with other Metrics

The choice of @ = 2 on the S, score indicates that gaining ~ 1.4x
higher throughput is equivalent to gaining 2x lower delay. We think
that this shows a more pragmatic metric than simply considering
1.4X better throughput equal to gaining 1.4X lower delay for the
end users in the Internet. Moreover, to show that changing the
values of a does not change the rankings provided that much, here,
we provide the rankings of the delay-based and ML-based schemes
for a = 3. Tables 2 and 3 show the new rankings.

D.2 A Tighter Winning Margin

As discussed before, we mainly use a winning margin of 10% to
identify the winners in different schemes. That means any scheme
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Table 2: Winning Rates of schemes in the delay-based league

3
in scenarios of Set I when winning metric is %

Rank || Scheme Set I
#1 Sage 48.48%
#2 Vegas 25.27%
#3 C2TCP 24.85%
#4 BBR2 20.15%
#5 Copa 11.40%
#6 LEDBAT | 02.54%
#7 Sprout 00.08%

Table 3: Winning Rates of schemes in the learning-based
3
league in scenarios of Set I when metric is =

Rank Scheme Set I
#1 Sage 38.03%
#2 Orca 31.70%
#3 Indigo 27.58%
#4 DeepCC 20.08%
#5 Indigov2 15.27%
#6 Genet 14.24%
#7 Vivace 8.60 %
#8 BC-top3 8.22 %
#9 BCv2 542 %
#10 Orcav2 5.15%
#11 Aurora 4.24 %
#12 OnlineRL | 4.05 %
#13 || BC-top 239%
#14 BC 1.02 %

with a score in the [0.9,1] range of the best score in a certain
environment is considered a winner scheme. Here, we examine a
tighter margin to identify the winners. In particular, we use a 5%
margin. As the results reported in Fig. 20 and 21 show, the rankings
will remain largely intact when compared with a 10% winning
margin.

Sage [ T
Indigo
Orca
Genet [N 14.05%
DeepcC [N 13.67%
Indigov2 [ 10.38%
Vivace [ 8.75% \
BC-top3 [ 6.21%
BCv2 [l 3.86%
Orcav2 [l 3.26% v
Aurora .2.69% !
OnlineRL [l 2.01%
BC-top [l 1.89%
BC [0.68%

Single-Flow Scenario

- OnlineRL 42.00%
\——— sage [T
- Orca [ 15.20%

BC-top [N 14.80%
L Indigov2 [N 13.80%

/ -

Orcav2 [IN11.00%
DeepCC [l 7.00%
Vivace [l 3.00%
BC-top3 [] 1.80%
Aurora ] 1.60%
Indigo [ 1.00%
Genet | 0.40%
BCv2 0.00%

BC 0.00%

Multi-Flow Scenario

Figure 20: The ranking of the league of ML-based designs
based on the schemes’ winning rates for the single-flow (left)
and multi-flow (right) scenarios when winning rate margin
is 5% (instead of the default 10%)

E MORE ON DYNAMICS OF SAGE
E.1 Sage as the Performance Frontier

The learning goal of Sage is to harness existing heuristic schemes
to automatically discover a better policy. To further highlight the
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Figure 21: The ranking of the league of delay-based designs
based on the schemes’ Winning Rates for the single-flow
(left) and multi-flow (right) scenarios when winning rate
margin is 5% (instead of the default 10%)

strength of Sage, we compare Sage to thirteen heuristics that Sage
has learned from. We evaluate Sage in two network environments
where the link capacities are constant, one with a shallow buffer and
the other with a deep buffer. Then, we report the data points depict-
ing the performance of heuristic schemes in terms of throughput
and delay in Fig. 22. As Fig. 22 illustrates, while exposed to a wide
distribution of data, Sage can learn to operate in high-utilization
and low-latency region and be the performance frontier. This high-
lights Sage’s ability to automatically recover a better policy from
the pool of existing heuristics with heterogeneous behaviors.

1.0 1.0
. —
L ™
0.8 ’ 0.8
C C
-S 0.6 | Schemes '80-6
S = Pool S
= Sage G’Q\e‘ b=
504 9 V 0.4 | Schemes -
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Sage <@
0.2 0.2
0.0 0.0

128 64 32
Measured Round-Trip Time (ms)

350 250 150 50
Measured Round-Trip Time (ms)

Figure 22: Sage automatically learns to attain the perfor-
mance frontier from the heuristics in two network environ-
ments: shallow (left) and deep (right) buffers

E.2 Impacts of Different AQMs on Sage

A good learned policy should not depend on any certain assump-
tions about the environment. Therefore, we investigate the impact
of different AQM techniques that can be executed in the network on
Sage and other CC schemes. In particular, we setup a 48Mbps, 20ms
minimum RTT, and 240KB buffer bottleneck link and use head drop
queue (HDrop), tail drop queue (TDrop), PIE [54], BoDe [4], and
CoDel [53] as AQM schemes in the network and let flows use differ-
ent CC schemes and run through this bottleneck link for a minute.
We repeat the tests five times and measure the average throughput
and delay of them. Fig. 23 shows the results. Sage’s performance
does not depend on the AQM scheme used, while other schemes
are significantly impacted by this change. Again, this can suggest
that the policy learned by Sage is a better-performing policy that
can scale well to other complex settings.
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Figure 23: Performance of schemes with diff. AQMs

F SAMPLE RESULTS OF THE LEAGUES
F.1 League of ML-based Schemes

Fig. 24 shows the dynamics of ML-based schemes in some sample
environments of Set II (sample small buffer scenario: 120KByte (=80
packets) buffer size, 40ms minimum RTT, & 24Mbps link capac-
ity, and sample large buffer scenario: 1.920MByte (=1280 packets)
buffer size, 40ms minimum RTT, 24Mbps link capacity). Sage ob-
tains good throughput and achieves better TCP friendliness in both
small buffer and deep buffer environments. Orca and BC-Top show
flow starvation in the deep buffer. On the other hand, Aurora is
aggressive and cannot coexist with TCP Cubic.
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Figure 24: Samples of friendliness aspect of Sage and some
other ML-based schemes in small buffer (top two rows) and
large buffer (bottom two rows) scenarios

F.2 League of Delay-based Schemes

Fig. 25 presents a sample set of the results from Set II (scenarios
are similar to the ones described in section F.1) of some of the
schemes in the league of delay-based ones. We observe that Vegas
has difficulty getting throughput in the presence of Cubic in both
small and large buffers. This also explains Vegas’s low ranking
in the multi-flow scenarios. Delay-based schemes such as Copa,
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C2TCP, and BBR2 have difficulties competing with Cubic flows
on large buffer sizes. As expected, these results highlight the well-
known challenge of designing delay-based CC schemes to obtain a
fair share when coexisting with Cubic flows in different network
settings.
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Figure 25: Samples of friendliness aspect of Cubic and a cou-
ple of delay-based schemes in small Buffer (top two rows)
and large buffer (bottom two rows) scenarios

G INTERNET EXPERIMENTS’ SETUP

In addition to our own servers in the US, our Internet experiments
consist of 28 servers around the globe on top of Geni [16] and AWS.
Table 4 shows the locations of servers. We use different schemes to
send 10-second flows between different servers in our experiments.
For each source-destination pair, we conduct five trials and report
the final average performance. To accurately measure the delay
of packets sent in different global timezones, we use NTP servers
to synchronize the clocks of client-server pairs before each run.
Among all the source-destination pairs, the minimum observed
round-trip time spans from 7ms to 237ms.

H SAMPLES FROM EXPERIMENTS ON
INTERNET

Samples of some of the results of our Internet experiments detailed
in section 6.1 are depicted in Fig. 26.

I SAMPLES OF FAIRNESS ASPECT OF OTHER
SCHEMES

Fig. 27 shows the result of the fairness evaluation described in
section 7.7 for different schemes. As mentioned before, fairness is
an easier objective to acquire compared to TCP-friendliness due to
its definition. Results of Fig 27 confirm that most of the CC schemes
achieve the fairness property when competing with flows using the
same CC algorithms, though there are still schemes such as Aurora
that fail to compete with their own family of protocols.
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Table 4: Location of GENI (left) and AWS (right) servers used
in our Internet evaluations

AWS Servers
Asia-East (HongKong)

Geni Servers
Tennessee (UTC)

Ohio (OSU) Asia-Middle East (Bahrain)
Maryland (MAX) Asia-North East (Osaka)
California (UCSD) || Asia-North East (Tokyo)
Missouri (UMKC) Asia-South (Mumbai)
Kentucky (UKY) Asia-South East (Jakarta)
Wisconsin (WISC) || Asia-South East (Singapore)
Ohio (CASE) Europe-Central (Frankufurt)
Washington (UW) Europe-South (Milan)
Colorado (CU) Europe-West (Ireland)

Ohio (MetroDC)
Illinois (UChicago)
Missouri (MU)
California (UCLA)
Virginia (VT)

Europe-West (London)
Europe-West (Paris)
South America (Sau Paulo)

J SAMPLES OF TCP-FRIENDLINESS ASPECT
OF OTHER SCHEMES

Fig. 28 shows the result of the evaluation of TCP-friendliness de-
scribed in section 7.7. Results indicate the more complicated aspect
of the TCP-friendliness objective. Competing with a loss-based
protocol such as Cubic is hard. The key is not to be very aggressive
toward a loss-based scheme (opposite of what Aurora does) and, at
the same time, not be very polite and not let a loss-based AIMD
scheme take the entire bandwidth (opposite of what Indigo does).
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Figure 26: Samples of the real-world Internet experiments and emulated cellular networks detailed in section 6.1. We plot the
average one-way delay and throughput of different CC schemes. The shaded ellipse represents the 1 — ¢ variation across runs,
while the center marker shows the average value for each scheme.
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Figure 27: Fairness aspect of Sage, five learning-based schemes, and four heuristic designs
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Figure 28: TCP-friendliness aspect of Sage, two learning-based schemes, and two heuristic designs when competing with 7 TCP

Cubic flows (top row) and 3 TCP Cubic flows (bottom row) over a 48Mbps link, 40ms mRTT, and BDP buffer
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