Check for
Updates

Agua: A Concept-Based Explainer for Learning-Enabled Systems

Sagar Patel

University of California, Irvine

Nina Narodystka
VMware Research by Broadcom

ABSTRACT

While deep learning offers superior performance in systems and
networking, adoption is often hindered by difficulties in under-
standing and debugging. Explainability aims to bridge this gap by
providing insight into the model’s decisions. However, existing
methods primarily identify the most influential input features, forc-
ing operators to perform extensive manual analysis of low-level
signals (e.g., buffer t — 1).

In this paper, we introduce Agua, an explainability framework
that explains a model’s decisions using high-level, human under-
standable concepts (e.g., “volatile network conditions”). Our concept-
based explainability framework lays the foundation for intelligent
networked systems, enabling operators to interact with data-driven
systems. To explain the controller’s outputs using concept-level
reasoning, Agua builds a surrogate concept-based model of the con-
troller with two mappings: one from the controller’s embeddings
to a predefined concept space, and another from the concept space
to the controller’s output. Through comprehensive evaluations
on diverse applications—adaptive bitrate streaming, congestion
control, and distributed denial of service detection—we demon-
strate Agua’s ability to generate robust, high-fidelity (93-99%) ex-
planations, outperforming prior methods. Finally, we demonstrate
several practical use cases of Agua in networking environments—
debugging unintended behaviors, identifying distribution shifts,
devising concept-based strategies for efficient retraining, and aug-
menting environment-specific datasets.

CCS CONCEPTS

» Networks — Application layer protocols; « Computing method-
ologies — Control methods; Neural networks;

KEYWORDS

Machine Learning for Systems, Explainability, Large Language Mod-
els

ACM Reference Format:

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi.
2025. Agua: A Concept-Based Explainer for Learning-Enabled Systems. In
ACM SIGCOMM 2025 Conference (SSIGCOMM °25), September 8—11, 2025,
Coimbra, Portugal. ACM, Coimbra, Portugal, 18 pages. https://doi.org/10.
1145/3718958.3754341

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM °25, September 811, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/2025/09.

https://doi.org/10.1145/3718958.3754341

329

Dongsu Han
KAIST

Sangeetha Abdu Jyothi

University of California, Irvine

1 INTRODUCTION

Today, learning-enabled controllers outperform manually designed
ones in a range of computer systems and networking applica-
tions, such as adaptive bitrate streaming [36, 70], congestion con-
trol [6, 24, 71], resource management [79], edge caching [60], or
network security [59]. However, operators often struggle with these
solutions because they are difficult to interpret, debug, and reason
about [38].

Current explainability solutions for learning-enabled controllers
focus primarily on interpreting their decisions by identifying the
most influential input features. For example, Metis [38] employs
a model distillation technique to convert the deep learning model
into a decision tree and presents feature-level decision paths as
explanations. Building on this approach, Trustee [23] identifies
whether the learned model contains any inductive bias by analyzing
the decision tree.

However, these feature-based solutions have intrinsic limitations.
They typically involve large decision trees with hundreds of nodes
and complex decision paths. For example, the video streaming ex-
plainer generated using Trustee in Fig. 1c has the decision path
[buffer;—1 < 0.91; chunk size;—; < 0.05; past quality;—; < 0.66;
...]. Such rule-based explanations, while more meaningful than a
neural network, are difficult to understand as they involve dozens
of decision points across disparate features. More importantly, ex-
isting feature-based explanation techniques [33, 54] fail to account
for high-level concepts that emerge from interactions among mul-
tiple features. For instance, identifying volatile network conditions
often cannot be attributed to a single feature, but instead requires
analyzing patterns across multiple features and time instances to
understand their combined impact.

Acknowledging these fundamental limitations of feature-based
techniques, a new generation of interpretable models was intro-
duced in computer vision: concept-bottleneck models (CBMs) [26,
72, 74]. Unlike traditional methods that rely on low-level features,
these models first predict higher-level concepts (e.g., ‘whiskers’
or ‘tail’) and then use them to obtain the final output (e.g., ‘cat’).
This approach enables users to reason intuitively about the model’s
decisions without needing to inspect individual pixel values.

We argue that concepts can similarly have the potential to bridge
the gap between operators and intelligent systems. In systems set-
tings, we envision concepts as high-level abstractions of controller
behaviors that span multiple timestamps and features, capturing
patterns that simple feature-based explanations overlook. For ex-
ample, in video streaming, concepts such as ‘Anticipation of con-
gestion’ or ‘Rapidly depleting buffer’ offer clearer insights than
raw values of throughput or delay. This improved clarity can en-
hance transparency and operational control, allowing operators to
effectively manage intelligent data-driven systems.

https://doi.org/10.1145/3718958.3754341
https://doi.org/10.1145/3718958.3754341
https://doi.org/10.1145/3718958.3754341
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718958.3754341&domain=pdf&date_stamp=2025-08-27

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

However, concept-based techniques used in computer vision [18,
20, 26, 72, 74] cannot be directly applied to systems environments
due to several reasons: (i) systems controllers take as inputs hetero-
geneous unlabeled data, while vision models handle images, with
wide availability of labels. (ii) Concepts in learning-enabled systems
are more complex, usually requiring multiple levels of abstraction.
(iii) Systems controllers typically handle complex temporal dynam-
ics and long-term dependencies. Thus, while we draw inspiration
from the notion of concepts in the computer vision domain, prior
techniques are not directly applicable to systems settings. Conse-
quently, a new approach to concept-based understanding is required
in learning-enabled systems.

In this paper, we reimagine concept-based explainability for sys-
tems and introduce Agua, the first framework for it. To address the
unique challenges of system environments, we introduce a concept
generation mechanism combining domain knowledge, data-driven
analysis, and Large Language Models (LLMs) [7, 12, 17, 65]. First,
we provide relevant literature or design documents to an LLM and
derive a set of base concepts. These base concepts may be further
augmented or filtered by the operator. Next, we develop a surrogate
concept-based model of the controller, which learns a mapping
from the input space to the output space of the controller, with
the base concepts as an intermediate representation. We achieve
this by splitting the surrogate model into two parts. We first build
the concept mapping function, which transforms controller inputs
into a space of these base concepts. Then, we learn the output
mapping function, which linearly combines those concepts to re-
construct the controller’s output. This two-stage surrogate model
enables Agua to reveal the main concepts driving its behavior. It is
also broadly applicable to heterogeneous systems with supervised,
semi-supervised, or reinforcement learning controllers.

We demonstrate Agua’s effectiveness in three different appli-
cations: adaptive bitrate streaming (ABR) [51], congestion control
(CC) [24], and DDoS detection [16]. In addition to being easy to
understand, Agua achieves high fidelity, exceeding 0.933 in all appli-
cations, and outperforms Trustee by up to 0.69. Agua unlocks new
capabilities at each stage of the system lifecycle. In design and test-
ing, Agua highlights which concepts underlie unexpected behaviors,
enabling operators to intuitively diagnose and fix them. In deploy-
ment, it detects shifts in the distribution by monitoring shifts in
key concepts over time. In retraining, Agua leverages concept-level
insights to guide model updates and data augmentation, improving
performance.

In summary, we make the following contributions:

e We propose concepts as high-level abstractions spanning multi-
ple features and timestamps and capturing complex patterns to
understand learning-enabled systems.

e We put forward Agua as the first concept-based explainer for
systems, combining the power of domain knowledge, data-driven
analysis, and LLMs.

e We evaluate Agua on adaptive bitrate streaming, congestion
control, and DDoS detection to show Agua’s high fidelity and
low complexity, outperforming prior state of the art.

e We demonstrate the new capabilities that Agua unlocks at each
stage of the system lifecycle, identifying and debugging unin-
tended behavior, detecting distribution shifts, guiding retraining,
and augmenting workload datasets.

330

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

e We validate the robustness of Agua, withstanding noise at mul-
tiple points in its pipeline, including variations in LLM outputs
and across both open- and closed-source LLMs.

This work does not raise any ethical concerns.

2 RELATED WORK AND MOTIVATION

Explainers shed light on the reasoning behind an opaque machine
learning model. We begin by providing a brief overview of the prior
techniques. Then, we highlight the limitations of these techniques
and discuss the opportunities presented by concepts in the computer
vision domain. Finally, we detail the roadblocks in adopting them in
the context of systems and motivate the need for a tailored solution.

2.1 Prior Explainers

Prior explainability approaches in the systems domainn predomi-
nantly identify the most important input features—we categorize
this line of work as “feature-based explainability”. Feature-based
explainers can be classified into two categories based on their scope:
(i) local explainers and (ii) global explainers.

(i) Local Feature Explainers. Local explainers, such as LIME [54],
SHAP [34], and Captum [28], explain the model’s prediction for
a specific input instance. They generate perturbed samples by in-
troducing small changes to the input and observing the model’s
predictions on these samples. A surrogate model, such as a lin-
ear regression [34, 54] or a saliency map [40, 62], is then trained
on the perturbed dataset to approximate the decision logic. The
parameters of the surrogate model reveal the top features for the
prediction.

(ii) Global Feature Explainers. Global explainers approximate
the behavior of the entire model across the input space. They train
an interpretable surrogate model, such as a decision tree [63, 76],
graph [75, 77], or rule set [42], to mimic the outputs for a dataset of
representative inputs. In the systems domain, Metis [38] constructs
global decision trees and hypergraphs to approximate neural net-
work behavior. Trustee [23] builds upon Metis by better balancing
fidelity, complexity, and stability, alongside providing a trust report.

2.2 Shortcomings of Prior Explainers

We demonstrate the limitations of feature-based explainers using
Trustee [23] with the state-of-the-art adaptive bitrate (ABR) con-
troller, Gelato [51]. Gelato is a deep RL controller, which takes as
input the history of the client’s viewing experience and gives as
output the next bitrate.

Motivating Scenario. Consider the scenario where the opera-
tor seeks to understand why Gelato picks a low bitrate despite
a recovering buffer in a particular state (Figure 1a). Trustee [23]
generates a global explanation of the controller as a decision tree.
The complete tree has 195 decision nodes and a depth of 13. Even
the pruned version of the tree has 61 nodes and a depth of 10. We
generate an explanation for the motivating scenario by traversing
the highlighted decision path on the pruned tree (Fig. 1c). Despite
this, the explanation is difficult to understand, involving seven de-
cision nodes on multiple features: buffer, selected chunk size, and
upcoming video qualities—split across time.

Agua: A Concept-Based Explainer for Learning-Enabled Systems

SIGCOMM ’°25, September 8-11, 2025, Coimbra, Portugal

=~ ~1.00 —~ Extreme Network 0.91
3 g < 5 Degradation
s 20 Z0.75 w4 —~]
a 9 £ N Recent Improvement in |5 9
0 N 0.50 o 5 Network
10 n €2 = :)
Z 20.25 2 a5 Switch to higher |y o1
] k] H quality after startup
o = 0. =
%% 7 & -1 %% o o %% 7 4 = % 7 4 =1 0 o1
Time Time Time Time Weight

(a) The motivating state

P
Buffert-5 <
<

True False
Selected Chunk Sizet-1 < .051 Action: Video Quality 10

Action: Video Quality 8

(b) Agua’s concept-based explanation

Buffert-1 < .911

Selected Quality t-1 < .664

Selected Chunk Size t-3 < .07
=

pu _
Delay t-1 < .069

Buffert-2 < .463

—a

Delayt-4< .17 Selected Chunk Size t-5 < .114

29 T Action: Vide:;;ityz) (

Action: Video Quality 6] Selected Chunk Size t-7 < .23

L S N —

S oS Y

e 1 o

(c) The decision path of the state in the pruned Trustee [23] report

Figure 1: Trustee [23]’s explanation for the motivating state. The full and pruned decision trees in its report are both large and even filtering
to the decision path for the motivation state leaves a complex explanation.

Feature-level explanations force human operators to understand
the intricacies of the feature set originally designed for a machine.
This often proves difficult without extensive data science expertise
and manual effort. This limitation is inherent to all feature-based
explainers [28, 33, 34, 54, 63, 76].

2.3 Concept-level View and Challenges

Recognizing the limitations of feature-based solutions, in the com-
puter vision domain, self-interpretable Concept-Bottleneck Models
(CBMs) [26, 72, 74] were proposed. CBMs modify the neural net-
work to introduce an intermediate concept-bottleneck layer. A CBM
first takes the image, passes it through the concept bottleneck layer
to predict the concepts present in the image, and then combines
the concepts to obtain the label for the image. For example, a model
may predict “bird” using weights on concepts “beak” and “wings”.

Inspired by these approaches, we believe that concepts can sim-
ilarly act as the bridge between data-driven systems and human
understanding. In systems, concepts can represent high-level, well-
defined ideas grounded in domain-specific knowledge (e.g., ‘in-
creasing packet loss’ in congestion control). For instance, consider
Figure 1b which shows Agua’s explanation for the motivating sce-
nario. Each bar represents how much a concept contributes to the
decision probability of the action. It is clear that the controller chose
the low-quality bitrate because it detected ‘Extreme Network Degra-
dation. These concept-based insights allow operators to quickly
and clearly understand the controller rationale and allow operators
access to expert-like, high-level reasoning.

However, applying concept-based techniques from the computer
vision domain to systems is non-trivial. In computer vision, a key
enabler has been the availability of tools to tag concepts in images.
Manual tagging approaches [15, 18, 20, 26] rely on the simplic-
ity of image labeling and use crowdsourcing platforms such as

331

MTurk [1]. More recent techniques [72, 74] employ multimodal
text-to-image models such as CLIP [53]. In contrast, systems data
is heterogeneous and unlabeled, making defining and labeling con-
cepts difficult. Furthermore, system concepts are more complex,
requiring multiple levels of abstraction. Lastly, system controllers
face intricate temporal dynamics and long-term dependencies, fur-
ther complicating reasoning. These factors prevent us from relying
on the mechanisms from vision techniques.

Despite this, we argue that concepts can still be the path towards
accurate and clear explanations. We therefore propose rethinking
concept-based explainability for systems.

3 DESIGN OF AGUA

We introduce Agual, the first framework for concept-based ex-
plainability in learning-enabled systems. Agua enables operators to
understand the controller’s behavior using high-level, expert-like
concepts (e.g., “volatile network conditions”) rather than individual
low-level features as in prior explainers [23, 34, 54]. This change in
perspective aligns the explanations with the expertise and needs of
the operators [48].

Agua achieves this by building a surrogate concept-based model
of the controller, with concepts as an intermediate representation.
This surrogate model has two key components: a concept mapping
function that translates the controller’s inputs into a concept space,
and an output mapping function that converts concepts back to
the controller’s output. Agua can reveal the linear combination of
concepts driving it, giving operators a direct view of the controller’s
behavior.

Agua builds this surrogate model through a multi-stage training
pipeline integrating domain knowledge, data-driven analysis, and
LLMs (Figure 2). ®Base concept generation: We generate the set of

!https://github.com/NetSAIL-UCl/agua

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

0 Base Concept Generation
. Embedding
Using of concepty
research docs, Large Base Concepts 1
identify concepts Language 1. Concept | Embedding Embedding
Model 2. Concept 2 m Model of concepty
LRCSchers Embedding
of concepty
|
Describe the Large Input Text)
patterns in input — WELTIEES Description [—R=ylELLILT Emf:f:.c:img —
Model of x Model
x
o Input Description Generation

_, Cosine __
similarity

o Input Concept Embedding

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

o Training Concept Mapping
Tagged
concept scores

i Col
- -)

Multi-dimensional classification

Concept scores

Tl

Normalization

(NENENCN

0.8

o Training Output Mapping

predictions

)l Embedding Concept Output .
x Network Mapping Mapping

Classification

Figure 2: Training workflow. @ We derive the base concepts. Then, ® we generate descriptions of inputs using an LLM. Next, ® we embed the
base concepts and input descriptions with a text embedding model and get concept similarity scores. ® We then sequentially train the concept
mapping function using the previously generated concept similarity scores (represented as a vector with concepts as rows and the similarity
score as the integer class). ® Finally, we train the output mapping function with the corresponding controller outputs y serving as our target.

base concepts from domain literature using an LLM, which may
be further filtered or augmented by an operator. We then gather
training data for the surrogate model in two stages. @Input descrip-
tion generation: We take each input from the dataset and prompt
an LLM for a structured text description. ®Input Concept Embed-
ding: We embed the base concepts and the previously generated
input descriptions using a text embedding model and empirically
tag concept similarities. @ Training Concept mapping: We use the
tagged concept similarities and train a concept mapping function
that transforms the controller’s embeddings into the concept space.
@ Training Output mapping: We train the output mapping function,
transforming the concept space back into the controller’s output.
After training, Agua can explain the original controller’s decision-
making for a given input by doing a forward pass through its sur-
rogate model. The weights on the linear combination of concept
scores in the output mapping function indicate the top concepts.

3.1 Definitions

Formally, we define the problem of training a concept-based ex-
plainer under the standard explainability view, aiming to find the
best surrogate approximation of a given model f.

Definition 3.1 (Explainer). An explainer f” is a surrogate function
that approximates the original by minimizing the distance metric E
between their outputs:

f= argn}i,nE(f(X),f’(X))

where f” maps inputs x to outputs y, and E quantifies the discrep-
ancy between f(x) and f’(x). E also serves as the standard metric
for quantitatively evaluating f” (e.g., the fidelity metric in § 4).

Definition 3.2 (Concept-Based Explainer). A concept-based ex-
plainer’s surrogate function is composed of two functions:

(%) = Q(8(x)) = WTs(x) + b

where 6 : RI — R is the concept mapping function that infers
concept similarity scores C (e.g., whether ‘volatile network con-
ditions” are present) in input x, and Q : R — R" is the output

332

mapping function that linearly combines these concept scores to
reconstruct the controller’s output vector y. The output mapping
function serves as the point of explanation in this model—it is a
self-interpretable function, with concepts as its input and the con-
troller’s output as its output. R is the input space, R is the concept
space, and R" is the output space. Note that this definition also
allows §(x) to be a composition of transformations on x. Often,
d(x) includes parts of the controller’s operations on x, making use
of available low-dimensional features of x and aligning f” to the
controller’s space.

Definition 3.3 (Concept-Based Explanation). Given input x and
the output y of the model, a concept-based explanation is a vector w
that reflects how each base concept contributes to y. It is obtained
by backtracking f’(x) through Q to retrieve the linear combination
of concepts that form y.

3.2 Deriving Base Concepts

Base concepts are the building blocks of Agua’s explanations, with
the controller’s output expressed as a weighted combination of
these concepts. They must meet the following criteria: (i) they must
relate to the controller, (ii) be inferable from its input features,
(iii) cover the controller’s output space at an appropriate level of
abstraction, and (iv) minimally overlap with other concepts.

However, constructing a set that meets all the requirements can
be challenging, even for experts. To facilitate this, we design a pro-
cess to get a starting set by combining the power of survey papers
and design documents, empirical analysis, and Large Language
Models (LLMs) [7, 12, 65].

We attach a relevant survey paper to the LLM prompt and in-
struct it to “focus on the background and prior work sections of the
paper and summarize factors that influence the controller decision-
making in {target domain}.” These survey papers contain the re-
search behind the controller and anchor the LLM to relevant re-
trieved facts. Using this rich context, we repeatedly prompt the
LLM to “list and describe the key concepts in the decision y of
a controller,” iterating through each possible output. We visually
describe this process in Figure 2 (@ ‘Concept generation’).

Agua: A Concept-Based Explainer for Learning-Enabled Systems

SIGCOMM ’°25, September 8-11, 2025, Coimbra, Portugal

9. Stable Buffer
10. Nearly Full Buffer
11. Startup of video

. Volatile Network Throughput

. Rapidly Depleting Buffer

. Low Content Complexity

. Recent Network Improvement

. Extreme Network Degradation

. Moderate Network Throughput

. Anticipation of Network Congestion
. Content requiring High Quality

0 N N U W N =

12. High Content Complexity

13. Network volatility needing switches
14. Avoiding Large Quality Fluctuations
15. Switch to higher quality after startup
16. High Network Throughput

. Increasing Packet Loss

. Decreasing Packet Loss

. Stable Network Conditions

. Rapidly Increasing Latency

. Rapidly Decreasing Latency
. Volatile Network Conditions
. Low Network Utilization

. High Network Utilization

0 g N U W N

(a) Concepts for Adaptive Bitrate Streaming

(b) Concepts for Congestion Control

1. Geographical and Temporal Consistency
2. Typical Application Behavior
3. Low-and-Slow Attack Indicators

4. High Request Rates
5. Geographic Irregularities
6. Protocol Anomalies

7. Repeated Access Requests
8. Behavioral Anomalies
9. Payload Anomalies

10. Protocol Compliance

(c) Concepts for DDoS Detection

Table 1: Base Concepts used for the applications Adaptive Bitrate Streaming, DDoS Detection, and Congestion Control. These serve as the unit
of explanation for Agua, with the controller’s output expressed as a linear combination of them.

While informative, because the LLM is not aware of the four
criteria we outlined above, this starting set may not meet all of
them. The operator may need to use their domain expertise to
augment, adjust, or filter it. If there are overlapping concepts, the
explanations can be difficult to understand. But if there are not
enough concepts, the explanations can be of low fidelity. To help the
operator filter, we introduce an empirical check by comparing inter-
concept similarities. Since the concepts are rich text descriptions,
we can embed them using a text embedding model [4, 66] and create
a cosine similarity matrix, where each entry (i, j) represents the
similarity between concept C; and concept Cj:

e(Ci) - €(Cy)

— 2 T vyijeC.
lle(Clllle(CHII

®

ConceptSimilarity; ; =

Here, € represents the text embedding function, and C is the set of
concepts. We iterate through this matrix and remove any concepts
that exceed a similarity threshold Spmax with previously retained
concepts.

Table 1 lists the base concepts derived by the process for dif-
ferent applications. While DDoS detection (1c) required minimal
intervention, adaptive bitrate streaming (1a) required augmenting
the starting set, and congestion control (1b) required filtering and
adjustments. When a survey document with a different perspec-
tive from the controller’s design document is used, the set of base
concepts can require more tuning. Fidelity could act as a key guide
through this process. If the data or concepts are inadequate, they
produce low-fidelity explanations. Robustness analysis (such as the
ones conducted in Section 5.3 and Appendix A.1) can also help.

3.3 Training Data for Agua’s Model

To train Agua’s surrogate model, we need labeled data, i.e., we need
the controller’s inputs labeled with the base concepts present in
them. However, as mentioned in Section 2.2, designing a concept la-
beling mechanism for networked system controllers is challenging.
Commonly used methods, such as crowdsourcing or multimodal
models, are not feasible due to the heterogeneous nature of inputs

333

in the systems domain. Moreover, since system concepts are inher-
ently complex, a single concept may span multiple input features
across time and employ multiple levels of abstraction.

To address these challenges, we prepare the training data in two
stages. First, we convert the inputs of system controllers to text
descriptions. This step allows us to transform the heterogeneous
input space of the controller to a unified semantic space. We au-
tomate this process using an LLM by providing the LLM with the
base concepts, the input features, and brief descriptions of each
feature. We then prompt the LLM to describe the input sample
by filling in predefined blanks. For an example of the full prompt
and the resulting description, see Figures 15 and 16 in the Appen-
dix. This structured, chain-of-thought prompting [11] guides the
LLM to closely examine the input features and how they might
be associated with the underlying concepts (® ‘Input Description
Generation’)

Second, we empirically measure semantic similarity of the full
text descriptions of the inputs to the base concepts. We embed
both the base concepts and the input descriptions using a text
embedding model [4, 41, 66], and measure the distance between
those vectors. Then, we quantize this similarity score into three
levels, low, medium, and high; with a concept considered ‘absent’
if the similarity score is low. By splitting the similarity scores into
classes rather than a boolean, Agua enables even low-similarity
concepts to be dominant. This can be important in scenarios such
as the one given in Fig. 4b where the absence of ‘high network
throughput’ is dominant, and allow Agua to generalize across the
multiple levels of abstraction needed in systems applications (&
‘Input Concept Embedding’).

Formally, we compute the cosine similarity between the text
embedding, e(x), of the input description, x, and each base concept,
€(c;). These similarity scores are then quantized into one of k dis-
crete classes using a quantization function ¥ (+). Sc;, the similarity
class assigned to concept c; in the set of concepts C, is expressed
as:

e(x) - e(ei)

lleGeCenll @

Scizlﬁk() Ve; € C.

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

These two stages together allow us to create a structured repre-
sentation of concepts in systems, avoiding the need for impractical
manual labeling or the need to engineer a large multimodal model
for systems. For details on the learning process and normalization,
please refer to Section 4. We note that this training data does not
create explanations themselves: the explanations are obtained by
using the trained surrogate model.

3.4 Learning Agua’s Surrogate Model

In this section, we present the design of our algorithm to learn
Agua’s surrogate concept-based model. This surrogate model mim-
ics the original controller model while using concepts as an inter-
mediate representation. With it, we can reveal the contributions of
each concept towards the controller’s output.

Following Definition 3.2, Agua’s surrogate function is a composi-
tion of two functions: the concept mapping and the output mapping
functions.

® Concept Mapping Function. The concept mapping function
generates a mapping from the controller inputs to the concept space.
More specifically, the concept mapping function of Agua takes as
input the controller’s embeddings of input x, denoted as h(x). This
allows Agua to use the available low-dimensional features of x in
the embedding space and align itself to the controller.

The concept mapping function dg is formulated as:

Sg :h(x) > REK h(x) e RH, 3)

Here, h represents the controller’s embedding network, and x is the
input. The embeddings are dense vectors of dimension H, deter-
mined by the controller’s architecture. 8y is a multi-label classifica-
tion model that outputs a vector of size C - k where C is the number
of concepts and k is the number of similarity levels tracked. If we
rearrange this vector to a matrix of size C X k, each element (i, j)
would represent the probability of concept C; having similarity k;.

Training the Concept Mapping Function: We frame the training of the
concept mapping function ¢y as a multi-label classification problem
and train §y to minimize the cross entropy-loss function:

c 3o (h(x))e,.5¢;
1 e 0 €0
Ix.Sc) = 5),)]
i=1

— IOg (25:1 e&g(h(X))ci,j

where Sc denotes the ground truth similaties and the element Sc,
is the similarity level of concept C; (e.g., similarity level high of
concept ‘stable network conditions’). The numerator captures the
model’s score for true similarity Sc, of concept C;, and the denomi-
nator represents the softmax normalization. Note that during the
training phase, gradients are not propagated back to the controller’s
parameters, ensuring that the original neural network, including
the controller’s embedding network, remains unchanged.

©

® Output Mapping Function. The output mapping function Q
(Definition 3.2) maps from the output of the concept mapping func-
tion, g, to the output space of the controller, y. We define Q as the
linear function:

Q(8p(h(x))) : y = W p(h(x)) +b ®)

where W is the weight matrix, b is the bias vector and y is the
output: a vector of n dimension. For classification controllers, n rep-
resents the number of output classes, with each element providing

334

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

Agua
MR Embedding l, =
X Network y Concept Output W
Mappi Mappi — Contributing
Orriginal Controller 2pping 2pPIng Concepts

Figure 3: Explanation workflow. After training, Agua takes the
controller embedding of an input and provides the linear combina-
tion of concept weights for the output.

the probability of the class. For regression controllers, n corresponds
to the dimensionality of the discrete bins used to approximate the
numerical output. In this case, the dot product Q(8g (h(x))) - bins
gives the numerical output.

Training the Output Mapping Function: We employ supervised learn-
ing to train the output mapping function Q, using mini-batch sto-
chastic gradient descent to minimize deviations from the controller.
While this training can produce an accurate output mapping func-
tion, it introduces a fidelity-complexity trade-off. Achieving high
fidelity could require relying on a large number of concepts, which
can make the explanations less understandable. To balance this
trade-off, we apply ElasticNet regularization [80] to W and b:

lelastic = (1= @)[WII3 + a(IWIl1 + [1b]l1) (6)

This regularization encourages sparsity and reduces overfitting by
combining both L1 and L2 penalties.

3.5 Generating Explanations with Agua

To explain the output for a given input x, Agua uses its surrogate
model to expose the linear combination of concept weights that
is behind the output. It does this in three steps. First, it passes x
through the controller’s embedding network. Second, it applies its
concept mapping function to compute the probabilities of concept
similarity classes. Third, it uses the output mapping function to
extract the linear weights and compute each concept’s contribution
to the output. Note that this explanation generation process does
not involve an LLM. LLMs are only used to train the surrogate
model of Agua.

We formally derive this explanation using Agua’s surrogate
model as shown below. In the surrogate model, the output for each
individual class i can be computed using the standard dot product:

QS (h(x)))i = W - 8p(h(x)) + by, Vi € [1,n] (7)

Here, W{? is the i-th row of the weight matrix W, representing
the weights for output class i, and b; is the scalar bias term for it.
n here represents the dimension of the output, i.e., the number of
potential values that the output can take. This dot product sums over
the weighted contribution of all concept similarities and obtains a
specific output i.

To extract each concept’s contribution, we can rewrite the dot
product with a Hadamard product:

i bi .
Q8p(h(x))): = IIW 0 8 (h(x)) + Il Vi€ [Ln] (8)

Here, W' is applied element-wise (using the Hadamard product o)
to the vector of concept similarities dg (h(x)), and the L1 norm sums
the resulting vector. If we stop before applying the L; norm, we

Agua: A Concept-Based Explainer for Learning-Enabled Systems

can see exactly how each concept contributes to the output i before
being summed. In other words, we can reveal each concept’s impact
on the output and thus obtain our concept-based explanation.

3.6 Supported Classes of Explanations
Agua supports multiple explanation types with varying scopes.

Factual Explanations. Factual explanations show why the con-
troller chose its output y; for a given input x. We query Agua for
the output class and retrieve the concept weight vector containing
the contribution of each concept to the selected output, summing
to the result of Q. However, since Q’s output is not normalized, the
weights may not sum to valid probabilities. To allow the concept
weight vector to sum to the probability p of the controller output
and to intuitively read and rank the top concepts as shown in Fig. 4a,
we normalize the concept weights using softmax:

concept weight; = p(argument-maximum(y))o(2); 9)
Zi
0(2)ij= ——,YieC (10)
CxGken

Counterfactual Explanations. Counterfactual explanations pro-
vide insight into an output y; not chosen by the controller. To enable
this, we use Agua’s support for arbitrary output class and query for
y;. With this functionality, operators can understand the conditions
under which y could have been selected and what prevented it.

Single Input Explanations. In single input explanations, the op-
erator has an instance x (e.g., from logs or a sample) and requests
an explanation for it. In this case, Agua can process x and provide
a concept-level breakdown for it.

Batched Input Explanations. Agua can also generalize to batches
of inputs. When a batch of inputs is provided, Agua averages the
concept contributions over that batch, providing a more holistic
view of the controller’s behavior.

4 EXPERIMENTAL SETUP

Input Description Generation. We convert the numerical inputs
of the controller to the concept space in two stages: (i) input de-
scription generation, where we convert the controller inputs to
text, and (ii) input concept embedding, where we embed the text de-
scriptions and concepts using a text embedding model and measure
their cosine similarity.

In the input description generation stage, our only goal is to use
an LLM to transform the inputs to text space. Thus, we want our
LLM responses to be as factual as possible: we do not want the
LLM to reason about an explanation or add any additional infor-
mation about these inputs. To enable this, we use standard CoT
guidelines [11]. We grounded the prompt by retrieving the relevant
features, their descriptions, and the concepts with which we mea-
sure similarity. To ensure that the LLM does not deviate from this
strict process, we follow the instructions-following guidelines [44]
for our LLM models, giving the LLM specific blanks to fill in to
describe the state fully. An example of this prompt and the result-
ing LLM description can be seen in the Appendix in Figure 15 and
Figure 16 respectively.

335

SIGCOMM ’°25, September 8-11, 2025, Coimbra, Portugal

Concept Mapping Function. The concept mapping function, a
parameterized function § of learnable weights 6 acts as the bridge
between the controller’s embedding space and the intermediate
concept-space. It is a multi-layer function made up of (i) a Linear
layer, (ii) a ReLU activation, (iii) a Layer-Normalization, and (iv) a
final Linear layer. Together, these four components transform the
controller’s embedding space h to the concept similarity space, Sc.
The first Linear and its following non-linear activation allow the
concept mapping function to learn meaningful information from
the controller embeddings. Then, the normalization layer allows
this information to shift away from the distribution of the controller
embeddings and instead align closer to a normal distribution. This
renormalization then allows the final linear layer to accurately
predict the concept similarity scores.

Output Mapping Function. The output mapping function con-
verts the concept space back to the controller’s output space y. This
is done with a single linear layer, which incorporates both a W
weight matrix and a b bias vector. This layer-level workflow allows
Agua to be natively implemented using standard Deep Learning
Libraries and standard learning paradigms.

Training Parameters. In all our experiments, we use the following
values for Agua’s parameters. For the quantization function used
to measure the concept intensities from cosine similarity scores,
we use the quantization bins [0, .2], [.2,.6], [.6, 1.0] for the concept
similarity classes low, medium, and high, respectively. The concept
mapping function is a 2-layer MLP with a LayerNorm [9] in be-
tween. In training the concept mapping function, we use batch size
100, learning rate 0.005, and 200 epochs. We additionally use the
stochastic gradient descent optimizer with a momentum parameter
of 0.25. In training the output mapping function, we use batch size
200, learning rate 0.075 and 500 epochs. We additionally use the
elastic regularization parameters o as 0.95 and the regularization
coefficient 1e7°.

Implementation. We implement Agua as a framework in Python.
We use the OpenAl API [8] to access GPT-40-2024-08-06 [2] and
the OpenAl large text embedding model [4]. For an open-source
variant, we additionally use the HuggingFace library [68] to inter-
face with the Large Language Model LLama 3.3 70B [17] and BAAI
BGE-M3 [41] text embedding model. We implement the concept
mapping and output mapping functions using Pytorch [46]. We use
the Numpy [21] to interface with LLM data and use Scikit-learn [52]
for its implementation of the cosine similarity measure.

Fidelity Metric. In explainability, the objective is to understand the
predictions of an opaque original model f(x) by approximating it
with an interpretable surrogate model f’(x). This surrogate model
is designed to mimic the behavior of f(x) while being understand-
able to humans. Work such as Metis [38], Trustee [23], as well as
our explainer, Agua, fall into this explainability category.

The standard way to assess the quality of the surrogate model
£’ (x) is to measure how well it tracks the original model f [10, 13].
This is done with the fidelity metric, which measures how accurately
the surrogate model replicates the original model’s predictions over
a dataset D.

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

Application Trustee [23] Agua

Full Pruned LLama3.3 GPT 4o
ABR 0.946 0.949 0.982 0.983
CC 0.215 0.235 0.932 0.936
DDoS Detection 0.991 0.977 0.996 1.000

Table 2: Explanation Evaluation: We evaluate the fidelity of Agua
against the SOTA feature-level explainer, Trustee [23]. We bench-
mark two versions of Agua, an open-source one with LLM LLama 3.3
70B [17] and BAAI BGE-M3 [41] embeddings, and a closed-source
one with LLM GPT-4o0 [3] and OpenAl large embeddings [4].

n

FD =2 3 A(F06) = f(X0), VX €D

i=1

(11)

where n is the number of samples in D, and 1 is the indicator
function that returns 1 if its argument is true and 0 otherwise.
Essentially, the fidelity metric, FD represents the proportion of
instances where the surrogate model’s predictions match those of
the original model. We directly apply this fidelity metric to evaluate
our surrogate model and report the results on an unseen test dataset
D.

5 EVALUATION

In this section, we first showcase Agua’s explanations across three
distinct systems applications—adaptive video streaming, congestion
control, and DDoS detection. Next, we highlight four practical use
cases of Agua that enhance learning-enabled systems, supporting
operators throughout the learning systems lifecycle. Finally, we
demonstrate the robustness of Agua against noise at various points
in its pipeline and analyze its explainability capabilities.

5.1 Agua’s Explanations

We apply Agua to three applications and demonstrate the under-
standing it enables into each.

Adaptive Bitrate Streaming. In adaptive bitrate streaming (ABR),
videos are divided into seconds-long chunks and pre-encoded at
multiple bitrates. During streaming, the ABR algorithm dynamically
selects the quality for each chunk based on network conditions,
aiming to maximize the client’s quality of experience. Owing to
its importance, many learning-enabled controllers have been pro-
posed [36, 51, 61, 70, 78].

We evaluate the state-of-the-art deep RL controller Gelato [51],
which handles streaming live television on the Puffer platform [70].
We roll out the controller in its environment and collect 4,000 input-
output pairs for training and testing. We then train Agua for the
controller, using the base concepts in Table 1a. We additionally
generate a Trustee [23] report using the same set (the report in
§2.2).

We observe in Table 2 that Agua successfully captures the con-
troller’s behavior, achieving high fidelity and even outperforming
Trustee [23]’s reports for the controller. We further use Agua to
investigate the decision-making process of Gelato, returning to

336

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

Extreme Network 0.91 Avoiding Large 0.003

Degradation Quality Fluctuations

Recent Improvement in |5 g2 Moderate Network 0.002
Network Throughput

Switch to higher |g g1 High Network [, 001

quality after startup Throughput is absent

0 1 0.000 0.003

Weight Weight

(a) Concept-level explanation for (b) Counterfactual explanation
controller’s bitrate for medium quality

Figure 4: The concept-based explanation for the ABR Motivation
Question. The explanations both identify the reason the controller
chose the low-quality bitrate and show the top concepts pushing to
the medium-quality one.

the motivating example (§ 2.2). We recall that the operator seeks
to understand why the controller selected a lower quality bitrate
instead of a medium quality option, despite a recovering buffer.

We first query Agua for a factual explanation for the controller’s
chosen bitrate in Fig. 4a. The operator can immediately see that
the controller selected the low-quality bitrate primarily due to
its perception of ‘Extreme Network Degradation, with a minor
impact from ‘Recent Improvement’, potentially latching on to the
trends in transmission time of the video chunks. We analyze the
input data to verify the concepts. We observe that transmission
times, which capture the time taken by the client to receive each 2-
second video segment, increased significantly from 1s to 3s in recent
history (Figure 1a), confirming significant network degradation.
We also observe that it improves to 2s in the most recent timestep,
confirming the presence of the concept ‘Recent Improvement’.

We further generate a counterfactual explanation for the opera-
tor’s preferred bitrate, the medium quality, in Fig. 4b. This explana-
tion reveals that the controller would select the medium bitrate if the
concepts ‘Avoid Large Quality Fluctuations’ and ‘Moderate Network
Throughput’ were more dominant and ‘High Network Throughput’
was absent. The operator was expecting a medium bitrate due to a
recovering buffer. However, as Agua reveals, the model’s decision-
making process gives a higher weightage to throughput-related
concepts over buffer-related ones, echoing its reasons for select-
ing its original medium quality bitrate. Although the buffer has
improved, the controller continues to choose a low bitrate because
the throughput has not recovered sufficiently. Thus, the factual and
counterfactual explanations together provide clear answers to the
operator’s questions.

Congestion Control. A congestion control (CC) algorithm deter-
mines the appropriate data transmission rate over a shared network,
aiming to maximize performance while preventing network col-
lapse. Recently, learning-enabled congestion control algorithms
have been proposed [6, 24, 71], which rely on complex analyses of
network round-trip time, throughput, packet loss rates, etc.

We evaluate Aurora [24], a deep RL controller for CC. Aurora
takes as input statistics about the client’s latency, throughput, and
loss, and outputs a discretized adjustment to the current data trans-
mission rate (from %x to 2x). We roll out the controller in its
environment and collect 2,000 training and 4,000 testing input-
output pairs. We train Agua for Aurora, reporting the base concepts

Agua: A Concept-Based Explainer for Learning-Enabled Systems SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

-
w

grosennny : : mmm Original Data mmm June 2024 Data

Proportion
—-
=)

o
4]

Volatile Rapidly Low Startup Extreme Moderate Stable High “Recent Switch to Network Avoiding Anti- Nearly e

High
Network Depleting Content of Network Network Buffer Content Network Higher Volatility Large cipation Full requiring Network
Thoughput Buffer Complexity Video Degra- Through- Complexity Impro- Quality needing Quality of Buffer High Throughput
dation put vement After switching Fluc- Network Quality
Startup tuations Congestion

Distribution of Concepts

Figure 5: Detecting Datashift in Adaptive Bitrate Streaming deployment with Agua. We analyze the dominant concepts of the inputs in both
data and aggregate them. We visualize the resulting normalized proportions.

1.0
Typical Application 0.002 Payload Anomalies 0.29 2021
Behavior 08| Training
Geographic 5 Data
Irregularities is 0.002 Protocol Anomalies 0.11 £0.6
absent] —— 2024 Data
) : — 0.4
High Request Rates 0.001 Typical Application 0.09 o
is absent ’ Behavior : oo
0.000 0.002 0.00 0.25
Weight Weight P2 10t 10° 100 102

(a) Explanation for LUCID’s pre- (b) Explanation for flagging of Mean Throughput (Mbps)

diction of benign traffic TCP SYN Flag Attacks
Figure 7: Drift in network throughput experienced by the ABR

Figure 6: Agua’s explanation for LUCID’s decision making process, controller from its 2021 training data and 2024 deployment data.

revealing its detection mechanism for DDoS flows.

DDoS Detection. Distributed Denial-of-Service (DDoS) attacks
are among the most disruptive cyberattacks [55]. Attackers often
exploit vulnerabilities in IoT devices—such as cameras or thermome-

found in Table 1b. We also generate a Trustee report using the same ters—to assemble botnets that launch volumetric attacks against
training and testing set and report the results. a single target. Attacks can generate over 1Tbps of traffic [25, 29]
We again observe Agua’s high-fidelity in the application in Ta- and are difficult to detect.
ble 2, significantly outperforming Trustee. This gap highlights the LUCID [16] is a deep supervised learning controller that aims
strict trade-offs between fidelity and complexity inherent in feature- to detect attacks in the brief window between attack initiation and
level explainers, where providing high-quality explanations often service denial. It takes as input low-level statistics about the flow
requires a substantial number of individual features. In contrast, and predicts whether it is benign or part of a DDoS attack. We
Agua generalizes to a higher level and enables operators to under- follow LUCID’s pipeline for the CIC-DD0S2019 dataset [57] and
stand the controller’s behavior in a way natural to them. In this use 1,000 input-output samples for training and 450 for testing,
application, the operator notices that the controller produces wide Again, we train Agua for LUCID, and present the base concepts
throughput fluctuations under seemingly stable network condi- generated in Table 1c.
tions. As with the other applications, we observe that Agua captures the
However, due to the fine granularity of congestion control where controller with high-fidelity in Table 2, outperforming Trustee. We
adjustments are made on millisecond or even submillisecond time- investigate the mechanism through which LUCID identifies DDoS
scales, understanding the operator’s scenario can be difficult using attacks. First, we evaluate benign flows on LUCID and observe
individual input-output pairs. To address this challenge, we leverage that it correctly classifies them as benign. We query Agua and
Agua’s batched inference mode to aggregate insights over time. We generate a batched factual explanation for these flows. We visualize
roll out the controller under cross-traffic patterns, record its inputs, this explanation in Fig. 6a. We can observe that the benign flows
identify key intervals, and query Agua for factual explanations. are primarily identified through ‘Typical Application Behavior’
Figure 9 visualizes these explanations alongside the throughput, and the absence of ‘Payload Anomalies’, which may be observed
tagging dominant concepts identified by Agua. The shaded region through the typical TCP acknowledgment patterns for the HTTP
indicates available capacity. From this view, the operator sees that requests found in these flows. To dig further, we evaluate LUCID
the controller maintains stable throughput when there is no sign on flows carrying out TCP SYN Flood attacks and query Agua to
of ‘volatile network conditions,” but sharply reduces throughput understand how it correctly detects these attacks. From Fig. 6b, we
in response to ‘rapidly increasing latency’, and recovers with ‘de- can observe that these flows are flagged as DDoS largely due to
creasing packet loss” This bird’s eye perspective shows the reasons ‘Payload Anomalies’ and ‘Protocol Anomalies’. These patterns can
behind the throughput fluctuations, which are often missed when be evident from the large volume of TCP SYN packets in these flows,
focusing solely on individual input samples and rate changes. where the attacker does not acknowledge the SYN/ACK handshake

337

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

packets sent by the server, and instead floods the server with more
SYN packets. Together, these explanations allow the operator to
understand the mechanism through which LUCID detects the attack
patterns in the CIC-DD0S2019 workflows and highlight LUCID’s
ability to do so consistently.

5.2 Applying Agua to enhance systems

In this section, we demonstrate the practical capabilities that Agua
unlocks in learning-enabled systems. The abstraction of concepts
enables reasoning about the data-driven system using domain-
specific terminology familiar to operators and enables them to
manage each stage of the system lifecycle—from design and testing
to deployment and retraining.

5.2.1
enabled systems often interact with dynamic workloads or real-
world network conditions during the course of deployment. In such
settings, data distribution shift is common. For example, during the
more than 1-year deployment cycle of the ABR controller Gelato,
we can witness indications of a shift in the network conditions of
clients. The standard approach to analyze this is to measure the two
distributions around a key variable [27]. For ABR, this is commonly
the client throughput. Thus, in Fig. 7, we plot the throughput distri-
bution from the Puffer platform data collected in June 2024 and the
training collected in April-May 2021. We notice that the distribution
has changed considerably but do not get an understanding of the
nature of the shift.

Agua’s concept-based perspective of the controller can solve this
problem. We rollout the controller in both datasets and obtain the
states the controller encounters within all the traces. We aggre-
gate the states at a trace level and generate Agua’s batched input
explanations for them. We then tag the traces with the top three
identified concepts and plot the proportions of the concepts in both
datasets. Figure 5 shows the result. We observe how the distribution
has changed at the concept level; conditions with ‘volatile network
throughput’, ‘rapidly depleting buffer’, ‘recent network improve-
ment’, and ‘high complexity content” have increased while ‘stable
buffer’, ‘extreme network degradation’, etc have decreased. At this
level, operators can precisely judge the impact of the data drift and
even define mitigation strategies, as we will see next.

5.2.2 Concept-Driven Retraining. Input-driven deep RL con-
trollers in systems are typically trained using traces from the target
environment. In the event of a distribution shift, the data used to
train the controller may become stale and hurt performance. In this
scenario, a common solution is to retrain the controller over the
new data, often in a continuous retraining procedure [70]. However,
this process can be tedious and computation-intensive, especially
for deep RL controllers in systems [35, 37].

In contrast, Agua’s ability to identify how the distribution has
shifted at the concept level allows us to design an efficient corrective
strategy that addresses the shift without needing to retrain on the
entire dataset. More specifically, with Agua’s concept tagging of the
traces, we can compare the distribution of concepts across the two
datasets and identify the ones whose proportions have increased.
For example, Fig. 5 shows the concept-level variations across the
two Puffer datasets discussed in § 5.2.1. The operator can then

Concept-Based Distribution Shift Detection. Learning-

338

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

-e- Traditional Retraining -~ Concept-Based Retraining

All Traces Slow Traces (<0.75 Mbps)
. 4
14.25
§16.82 § /
% %14.00 /.
16.80 s R
S / PN FER G //
X 16.77 - Z - °
. 13.50 |e-._ "
0.5 1.0 0.5 1.0

Train Stepsle7 Train Stepsle7

Figure 8: Performance of ABR controller after a retraining proce-
dure targeting the distribution shift.

o i~ Rapidly

ke i |Increasing

52 Latency Decreasing

s P i Packet Loss

Q Volatile -

_gﬁ 1 Network

8 Conditions s H

‘_E absent :Volatile Network :

Fo H Conditions absent
0 25 50 75 100 125 150 175

Timestamp

Figure 9: Agua’s explanation for Aurora’s behavior, with explana-
tions identifying high-level concepts across time.

retrain on the subset of traces that were insufficiently represented
in the original dataset (marked in red in Fig. 5).

We compare the result of the concept-driven retraining proce-
dure with traditional retraining on the entire new dataset in Fig. 8.
The result shows that concept-based retraining outperforms stan-
dard retraining, converging to a higher average QoE in both all and
slow network traces. We can additionally observe that the concept-
based retraining strategy is stable, steadily improving in QoE across
training steps. In contrast, traditional retraining is noisy, gaining
and losing QoE throughout the process. Despite training for more
than 10 million timesteps, the traditional retraining process does
not catch up to the concept-driven approach. This result highlights
the prior research demonstrating the difficulty of RL training when
the distribution of input traces is wide [37, 51, 69] and also high-
lights the improvement we can achieve when we focus and filter
the distribution with concept-based analysis.

5.2.3 Enabling Debuggability. Debugging learning-enabled
systems can be especially challenging because operators must look
beyond the current controller and system to uncover hidden failure
points. Traditionally, this has meant running repeated statistical
analyses, building and interpreting decision trees, and consolidating
insights by hand.

With Agua, operators can instead inspect expert-like explana-
tions that unify these steps. As an example, we revisit the congestion
control scenario (§ 5.1) where the controller throughput fluctuates
despite stable conditions. By examining Agua’s explanation (Fig. 9),
we can realize that the controller keeps perceiving “rapidly increas-
ing latency” and therefore throttles its throughput too aggressively
even when the network conditions are stable.

Agua: A Concept-Based Explainer for Learning-Enabled Systems

"ﬂ; Original
22 —— Fixed
=
3
s /
ol | I
S “ k/'/ ‘wf
2 v
o
Fo
0 25 50 75 100 125 150 175
Timestamp

Figure 10: Debugging Aurora with Agua, attaining stable through-
put near link capacity.

—— Original Sampled
1.0 3G Data 4G Data 5G Data Broadband Data

c
o
é_o.s
o KS Test: KS Test: KS Test: KS Test:
o 00 0.0668 0.0488 0.0854 0.0841

o 5 0 5 0 5 0 5

Cluster Cluster Cluster Cluster

Figure 11: Dataset Expansion, showing that Agua can closely match
the target workload distribution with few samples.

Based on this explanation, we can conclude that the controller
has a distorted latency perception and thus lacks sufficient latency
context. To address this, we add a feature for average latency and
extend the history length from 10 to 15. We also adjust training
parameters—lowering the learning rate from 1x 1074 to 7.5 x 107>
and increasing entropy—to help the controller converge smoothly
on this richer feature set. Figure 10 shows the outcome: the cor-
rected controller (in red) remains steady near full link capacity,
while the original (in blue) oscillates. By visualizing the controller’s
decisions in Agua, we could naturally identify and implement the
changes needed for a stable, high-throughput solution.

5.24 Concept-Guided Dataset Expansion. Data is a crucial
part of all data-driven learning-enabled systems. However, when
working with client workloads or with emerging applications, op-
erators may not always have large datasets. Instead, they may only
have access to a large general dataset or a few examples of their
target workload. In this case, data expansion or augmentation may
be the only choice [58, 64].

With its concept-based perspective, Agua can serve as a powerful
tool for dataset expansion. Agua can embed available data in a rich
concept space using the data generation workflow (Stages 1, 2, and
3 in Fig. 2) and build a concept-level store of known datasets. Then,
with a few instances from a target workload, we can look up the
closest samples in the concept space based on cosine similarity and
assemble a new larger set similar to the target workload.

To evaluate whether the generated output distribution closely
tracks the target workload distribution, we first cluster the available
data based on their text embeddings (from Stage 3 in Fig. 2). Each
workload typically has a unique distribution of traces across the
resulting clusters. For example, the 3G workload in Fig. 11 has
50% traces from cluster 1, 10% from cluster 2, etc. We compare
the distribution of the generated and target workloads using the

339

SIGCOMM ’°25, September 8-11, 2025, Coimbra, Portugal

(a) Multiple LLM (b) Added input (c) Added input

-g queries noise to LLM noise to explainer

9 1.00 1.00 1.00

C

So0.75 0.75 0.75

n

8-0 50 0.50 0.50

2

Y

©0.25 0.25 0.25

@ 0.00 0 0

& ' ABR CC DDoS ABR CC DDoS ABR CC DDoS
Application Application Application

Figure 12: Robustness of Agua: We visualize the impact of faults at
multiple points in Agua’s pipeline. In (a), we visualize the robustness
of the LLM across multiple queries, in (b) its robustness with more
than 5% added noise to the inputs, and in (c) Agua’s explanations
across 5% added noise.

Kolmogorov-Smirnov test (KS test) to measure their similarity. This
test calculates the supremum of distances between the empirical
CDFs and provides us with a measure of closeness.

We empirically evaluate Agua’s capabilities at this task by assem-
bling four datasets of distinct network workloads: 3G, 4G, 5G, and
broadband. We then rollout Gelato on each of these datasets and
aggregate the states at the workload level. We then use Agua’s data
generation workflow to form a large data store of the workloads.
Then, we query this store with a small set of held-out samples of
each workload. We assemble a new expanded dataset of each type
by aggregating the samples most similar to the target workload in
cosine distance. We visualize the result of this analysis in Figure 11,
where we plot the empirical CDF of each of the datasets across the
unified clustering axis. We observe that the sampled augmented
data closely tracks the CDF of the original. We can observe that the
KS Test statistic is below 0.08 in each case, signifying that the two
distributions are very similar. This demonstrates Agua’s ability to
closely track the data and practically alleviate problems throughout
the lifecycle of learning-enabled systems.

5.3 Agua Robustness

To further validate the high fidelity of Agua’s explanations, in this
section, we conduct a series of experiments to assess the robustness
of Agua at multiple points, as shown in Figure 12.

Multiple LLM queries. First, we assess the sensitivity of Agua’s
Input Concept Embeddings—values obtained via LLMs and text em-
bedding models—to the inherent randomness in LLM outputs. We
repeatedly query the LLM to describe the same input sample, gener-
ating an Input Concept Embedding from each description. We then
identify the top five highest-intensity concepts across all queries
and measure how often these overall top five concepts appear in
each individual query’s top five. This recall value is visualized in
Figure 12a. We observe that the overall top concepts are recalled
over 80% of the time across all applications. This result highlights
the robustness of Agua’s data-first empirical approach to concept
similarity identification, demonstrating its ability to withstand the
inherent randomness in LLM outputs.

Added noise to the LLM input sample. Next, we analyze the
robustness of Input Concept Embeddings to noise in the input

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

samples. This evaluation ensures that noisy conditions in data
collection (e.g., measurement delays, conversion errors) do not
significantly impact the embeddings. We first obtain baseline values
for an input sample x by querying for its description and concept
mapping. Then, we add noise up to 0.07X the standard deviation of
the input to x (about 5% noise) and generate new concept intensities.
We collect multiple embeddings from these noisy variations and
measure the recall of the baseline top five concepts in each noisy
sample’s top five. The results are visualized in Figure 12b. We find
that Agua’s pipeline remains robust to this noise, again achieving
more than 0.80 recall across applications, and ensuring the validity
of the training data despite potential imperfections.

Added input noise to the explainer. Finally, we analyze the
robustness of Agua’s fully trained explanations to input sample
noise. We generate baseline factual explanations for input samples
x, then add the same 5% noise to x and regenerate the explana-
tions. We present the results in Figure 12c, comparing the noisy
explanations to the baseline. Due to the stability in the training
data, the explainer remains robust, achieving recalls close to 0.9
across applications. These experiments demonstrate the reliability
of Agua’s explanations against potential failure points.

6 DISCUSSION AND LIMITATIONS

Building upon our prior work [48] on concept-based explainability
of learning-based systems, we conceive Agua to be a stepping
stone towards concept-level analysis in practical learning-enabled
systems rather than a one-stop solution, laying the path for future
work.

Adhoc Text Explainability. Besides Agua, there are many unex-
plored ways to incorporate natural language understanding into
data-driven applications—for example, by prompting an LLM to
convert decision trees to text, or even by simply having it sum-
marize the controller’s behavior. While these directions can be
interesting, they can also introduce additional challenges. Solutions
in the field of explainability can be difficult to evaluate [43]. To
this end, Agua offers a natural evaluation tool, as it is a surrogate
model technique similar to Trustee [23] and Metis [38], which can
be empirically evaluated through fidelity—a measure of how well
it mimics the controller. By contrast, LLM approaches that do not
involve building such a model lack such a statistical measure.

Simpler Classes of Machine Learning Controllers. Agua en-
ables understanding deep learning controllers, encompassing a wide
range of controllers used in supervised, semi-supervised, and rein-
forcement learning. However, in its current form, Agua’s concept-
level view does not generalize to classes of controllers that, while
simpler than neural networks, remain challenging to understand
(e.g., decision trees, gradient boosting machines, etc). This limitation
is due to Agua’s reliance on fixed-dimensional vector embeddings
from the controller, which may not be obtainable from these simpler
classes of models. Research focused on encoding these models [14]
could help bridge this gap.

Suboptimal Base Concepts. Base concepts serve as the build-
ing blocks of Agua’s explanations, with the controller’s output
represented as a linear combination of these concepts. Since the
controller inputs are projected onto this concept space, the quality

340

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

of the base concepts impacts Agua’s fidelity. Similar to decision tree
methods, where suboptimal decision basis from its heuristics [31]
can lead to lower-fidelity explanations, suboptimal base concepts
can reduce explanation fidelity. We observe this in Appendix A.1
when investigating the impact of size of the concept space on fi-
delity. However, identifying the optimal set of concepts remains a
challenging problem [26, 72]. Research for better filtering and aug-
menting the concept set [56, 72, 73] could further improve Agua’s
fidelity.

LLM Reliability. LLMs today can be unreliable, hallucinating on
the prompt details or producing inconsistent outputs. To address
this unreliability, we formulate Agua as a surrogate model explainer.
Even though LLMs are used to generate its training data, Agua’s
explanations rely only on the surrogate model (as seen in § 3.6,
LLMs are not used to generate explanations). This separation al-
lows the training process of Agua to withstand the noise of the
LLM outputs. The LLM’s incorrect description of a controller in-
put does not invalidate its explanation; the explanation is built
from training that takes into account the overall data. However,
this does not insulate Agua from all problems with the LLM. If
the LLM consistently produces incorrect outputs for all inputs, for
example, due to a misbehaving prompt [32] or a bug [45], it can
corrupt Agua’s training data and produce low-fidelity explanations.
Standard checks [67] or validation (e.g., Appendix A.2) to confirm
the behavior of LLM can prove vital here. We additionally note that
Agua, like Trustee [23] and Metis [38], is a post-hoc explainability
method and cannot provide exact guarantees. In cases where mul-
tiple pathways can lead to the same prediction, the “explanation”
from a post-hoc method may not reflect the actual reasoning of the
original model.

Growing LLM Research. The field of Al is evolving rapidly. Open-
source LLMs are attaining state-of-the-art performance, and new
models are becoming available each day. To incorporate these ad-
vances, we evaluate Agua with LLama 3.3-70B [17] in Table 2, find-
ing that this open-source variant performs almost on par with GPT-
40 [3]. Since conducting our experiments, OpenAl has launched
o1, which ranks among the top at the U.S. Math Olympiad [5],
and even unveiled 03, attaining 3X the intelligence of 01 [22]. As
these models continue to improve, the steps Agua takes to limit
reliance on them may become unnecessary. We see this progres-
sion as further motivation to harness the power of language-tied
concepts, becoming a crucial step toward the coevolution of Al and
computing systems [19, 30, 39].

Unified Explainability. While Agua provides operators with an
understanding of the controller’s fully trained neural network, it
does not provide insights into why it got there. It does not capture
the time-dependent control loop: how the controller influences the
system and how the system’s behavior influences the controller
training. However, this perspective can be crucial to designing ef-
fective data-driven solutions. With an understanding of how the
controller perceives the future, the operator can effectively diagnose
not just the resultant controller but also the optimization process
used to achieve it. Efforts to combine this future-based perspec-
tive [47, 50] with Agua can be a significant step towards this unified
perspective on explainability.

Agua: A Concept-Based Explainer for Learning-Enabled Systems

Interactive Intent-Driven Controller Design. In light of the
rapid evolution of LLMs, we envision that concept-based explana-
tions will enable breakthroughs in data-driven controller design,
allowing operators to interact in natural language to design con-
trollers that match their intent. We believe that mapping input
states to concepts is a key step toward this agentic Al-enabled de-
sign process, as it connects the inputs and outputs of a controller
to the complex and nuanced encoding of concepts, semantics, and
relationships. By combining the logic and ideas embodied in LLMs
with controller-specific data-driven learning, we hope our work
paves the path towards a new class of intelligent systems.

7 CONCLUSION

In this paper, we present Agua, a radically new explainability frame-
work designed for human operators based on high-level concepts.
We demonstrate Agua’s ability to generate high-fidelity and robust
explanations, outperforming prior techniques. We further demon-
strate Agua’s ability to enable operators to intuitively meet key
needs throughout the system lifecycle. We envision this work to
highlight the potential of high-level concept-based explanations
and offer a path towards a framework where operators build and
manage intelligent systems through nothing but their domain ex-
pertise and familiar language.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback.
This work is supported in part by the Institute of Information &
Communications Technology Planning & Evaluation (IITP) and Na-
tional Research Foundation (NRF) of Korea (No. RS-2024-00418784
and RS-2024-00340099).

REFERENCES
(1]

[2

(3]

[n.d.]. Amazon Mechanical Turk. https://www.mturk.com/. (Accessed on
06/16/2024).

[n.d.]. Hello GPT-40 | OpenAl https://openai.com/index/hello-gpt-40/. (Ac-
cessed on 06/26/2024).

[n. d.]. Introducing Structured Outputs in the API | OpenAL https://openai.com/
index/introducing-structured-outputs-in-the-api/. (Accessed on 09/18/2024).
[n.d.]. New embedding models and API updates | OpenAl. https://openai.com/
index/new-embedding-models-and-api-updates/. (Accessed on 06/17/2024).
[n.d.]. OpenAl o1 Hub | OpenAl https://openai.com/o1/. (Accessed on
09/18/2024).

Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic meets modern:
A pragmatic learning-based congestion control for the Internet. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer
communication. 632—647.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Open AL [n.d.]. openai-python: The official Python library for the OpenAI APL
https://github.com/openai/openai-python. (Accessed on 09/17/2024).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

Vaishak Belle and Ioannis Papantonis. 2021. Principles and practice of explainable
machine learning. Frontiers in big Data 4 (2021), 688969.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting is pro-
gramming: A query language for large language models. Proceedings of the ACM
on Programming Languages 7, PLDI (2023), 1946-1969.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

=

(71

[8

[9

=

[10

[11]

[12]

341

(13

[14

[15

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

(31]

(32

™
3

(34

SIGCOMM ’°25, September 8-11, 2025, Coimbra, Portugal

Nadia Burkart and Marco F Huber. 2021. A survey on the explainability of
supervised machine learning. Journal of Artificial Intelligence Research 70 (2021),
245-317.

Arthur Choi, Andy Shih, Anchal Goyanka, and Adnan Darwiche. 2020. On sym-
bolically encoding the behavior of random forests. arXiv preprint arXiv:2007.01493
(2020).

Devleena Das, Sonia Chernova, and Been Kim. 2023. State2explanation: Concept-
based explanations to benefit agent learning and user understanding. Advances
in Neural Information Processing Systems 36 (2023), 67156-67182.

Roberto Doriguzzi-Corin, Stuart Millar, Sandra Scott-Hayward, Jesus Martinez-
del Rincon, and Domenico Siracusa. 2020. LUCID: A practical, lightweight deep
learning solution for DDoS attack detection. IEEE Transactions on Network and
Service Management 17, 2 (2020), 876-889.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
Radwa El Shawi. 2024. ConceptGlassbox: Guided Concept-Based Explanation for
Deep Neural Networks. Cognitive Computation (2024), 1-14.

David B Fogel. 2006. Evolutionary computation: toward a new philosophy of
machine intelligence. John Wiley & Sons.

Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. 2019. Towards
automatic concept-based explanations. Advances in neural information processing
systems 32 (2019).

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Jeremy Hsu. [n.d.]. OpenAI's 03 model aced a test of Al reasoning — but
it’s still not AGI — newscientist.com. https://www.newscientist.com/article/
2462000- openais-03-model-aced- a- test- of-ai- reasoning-but-its- still-not-agi/.
[Accessed 07-01-2025].

Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit
Gupta, and Lisandro Z Granville. 2022. Ai/ml for network security: The emperor
has no clothes. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 1537-1551.

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A deep reinforcement learning perspective on internet congestion control.
In International conference on machine learning. PMLR, 3050-3059.

James A Jerkins. 2017. Motivating a market or regulatory solution to IoT in-
security with the Mirai botnet code. In 2017 IEEE 7th annual computing and
communication workshop and conference (CCWC). IEEE, 1-5.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pier-
son, Been Kim, and Percy Liang. 2020. Concept bottleneck models. In International
conference on machine learning. PMLR, 5338-5348.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International conference on machine learning. PMLR, 5637-5664.
Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Sigi
Yan, et al. 2020. Captum: A unified and generic model interpretability library for
pytorch. arXiv preprint arXiv:2009.07896 (2020).

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80-84.
Kirill Krinkin, Yulia Shichkina, and Andrey Ignatyev. 2021. Co-evolutionary
hybrid intelligence. In 2021 5th Scientific School Dynamics of Complex Networks
and their Applications (DCNA). IEEE, 112-115.

Hyafil Laurent and Ronald L Rivest. 1976. Constructing optimal binary decision
trees is NP-complete. Information processing letters 5, 1 (1976), 15-17.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang,
Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan Zheng, et al. 2023. Prompt Injec-
tion attack against LLM-integrated Applications. arXiv preprint arXiv:2306.05499
(2023).

Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30,
L. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 4765-4774. http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30,
L. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 4765-4774. http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

https://www.mturk.com/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/o1/
https://github.com/openai/openai-python
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.newscientist.com/article/2462000-openais-o3-model-aced-a-test-of-ai-reasoning-but-its-still-not-agi/
https://www.newscientist.com/article/2462000-openais-o3-model-aced-a-test-of-ai-reasoning-but-its-still-not-agi/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

[35]

[36]

[37]

[38

[39

[40]

[41]

[42]

[43]

[44]

[45

[46]

[47]

[48

[49]

[50]

[51]

[52

[53

[54]

[55]

[56

[57]

Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun Singh, Drew Blaisdell, Yuan-
dong Tian, Mohammad Alizadeh, and Eytan Bakshy. 2020. Real-world video
adaptation with reinforcement learning. arXiv preprint arXiv:2008.12858 (2020).
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197-210.

Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Moham-
mad Alizadeh. 2018. Variance reduction for reinforcement learning in input-
driven environments. arXiv preprint arXiv:1807.02264 (2018).

Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and Hongxin Hu.
2020. Interpreting deep learning-based networking systems. In Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication.
154-171.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi,
et al. 2021. A graph placement methodology for fast chip design. Nature 594,
7862 (2021), 207-212.

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar
Dhamdhere. 2018. Did the model understand the question? arXiv preprint
arXiv:1805.05492 (2018).

Multi-Linguality Multi-Functionality Multi-Granularity. [n. d.]. M3-Embedding:
Multi-Linguality, Multi-Functionality, Multi-Granularity Text Embeddings
Through Self-Knowledge Distillation. ([n.d.]).

W James Murdoch and Arthur Szlam. 2017. Automatic rule extraction from long
short term memory networks. arXiv preprint arXiv:1702.02540 (2017).

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin
Schmitt, Jorg Schlétterer, Maurice Van Keulen, and Christin Seifert. 2023. From
anecdotal evidence to quantitative evaluation methods: A systematic review on
evaluating explainable ai. Comput. Surveys 55, 13s (2023), 1-42.

OpenAl [n.d.]. OpenAl Platform — platform.openai.com. https://platform.
openai.com/docs/guides/text?api-mode=responses. [Accessed 04-06-2025].
openAl [n.d.]. Sycophancy in GPT-40: What happened and what we’re doing
about it. https://openai.com/index/sycophancy-in-gpt-40. [Accessed 04-06-
2025].

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Sagar Patel, Sangeetha Abdu Jyothi, and Nina Narodytska. 2023. Towards Future-
Based Explanations for Deep RL Network Controllers. SIGMETRICS Perform.
Eval. Rev. 51, 2 (Oct. 2023), 100-102. https://doi.org/10.1145/3626570.3626607
Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi. 2024. To-
ward Trustworthy Learning-Enabled Systems with Concept-Based Explanations.
In Proceedings of the 23rd ACM Workshop on Hot Topics in Networks. 60-67.
Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi. 2024.
Toward Trustworthy Learning-Enabled Systems with Concept-Based Explana-
tions. In Proceedings of the 23rd ACM Workshop on Hot Topics in Networks (Irvine,
CA, USA) (HotNets °24). Association for Computing Machinery, New York, NY,
USA, 60-67. https://doi.org/10.1145/3696348.3696894

Sagar Patel, Sangeetha Abdu Jyothi, and Nina Narodytska. 2024. CrystalBox:
future-based explanations for input-driven deep RL systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 14563-14571.

Sagar Patel, Junyang Zhang, Nina Narodystka, and Sangeetha Abdu Jyothi. 2024.
Practically High Performant Neural Adaptive Video Streaming. Proc. ACM Netw.
2, CONEXT4, Article 30 (Nov. 2024), 23 pages. https://doi.org/10.1145/3696401
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748-8763.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135-1144.

Mikail Mohammed Salim, Shailendra Rathore, and Jong Hyuk Park. 2020. Dis-
tributed denial of service attacks and its defenses in IoT: a survey. The Journal of
Supercomputing 76 (2020), 5320-5363.

Simon Schrodi, Julian Schur, Max Argus, and Thomas Brox. 2024. Concept
Bottleneck Models Without Predefined Concepts. arXiv preprint arXiv:2407.03921
(2024).

Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A Ghorbani.
2019. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In 2019 international carnahan conference on security technology
(ICCST). IEEE, 1-8.

342

[58

[59

[60

(62

[63]

[64

[66

[67]

[68

[70

[71

[72

(74

[75

[76

[77

[79

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of big data 6, 1 (2019), 1-48.

Shivani Singh, Razia Sulthana, Tanvi Shewale, Vinay Chamola, Abderrahim
Benslimane, and Biplab Sikdar. 2021. Machine-learning-assisted security and
privacy provisioning for edge computing: A survey. IEEE Internet of Things
Journal 9, 1 (2021), 236-260.

Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altinbiiken, Eugene Brevdo,
Jimmy Coleman, Xiao Ju, Pawel Jurczyk, Richard Schooler, and Ramki Gummadi.
2023. {HALP}: Heuristic aided learned preference eviction policy for { YouTube}
content delivery network. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 1149-1163.

Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao
Liu, and Bruno Sinopoli. 2016. CS2P: Improving video bitrate selection and
adaptation with data-driven throughput prediction. In Proceedings of the 2016
ACM SIGCOMM Conference. 272-285.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International conference on machine learning. PMLR, 3319—
3328.

Sarah Tan, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo. 2018.
Learning global additive explanations for neural nets using model distillation.
stat 1050 (2018), 3.

Luke Taylor and Geoff Nitschke. 2018. Improving deep learning with generic
data augmentation. In 2018 IEEE symposium series on computational intelligence
(SSCI). IEEE, 1542-1547.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised
contrastive pre-training. arXiv preprint arXiv:2212.03533 (2022).

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Sid-
dhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey,
Shubh-Agrawal, Sandeep Singh Sandha, Siddartha Venkat Naidu, Chinmay Hegde,
Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Goldblum. 2025.
LiveBench: A Challenging, Contamination-Free LLM Benchmark. In The Thir-
teenth International Conference on Learning Representations.

T Wolf. 2019. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771 (2019).

Zhengxu Xia, Yajie Zhou, Francis Y Yan, and Junchen Jiang. 2022. Genet: auto-
matic curriculum generation for learning adaptation in networking. In Proceedings
of the ACM SIGCOMM 2022 Conference. 397-413.

Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). 495-511.

Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis,
and Keith Winstein. 2018. Pantheon: the training ground for Internet congestion-
control research. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
731-743.

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-
Burch, and Mark Yatskar. 2023. Language in a bottle: Language model guided
concept bottlenecks for interpretable image classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 19187-19197.
Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and
Pradeep Ravikumar. 2020. On completeness-aware concept-based explanations
in deep neural networks. Advances in neural information processing systems 33
(2020), 20554-20565.

Mert Yuksekgonul, Maggie Wang, and James Zou. 2022. Post-hoc concept bottle-
neck models. arXiv preprint arXiv:2205.15480 (2022).

Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and Song-Chun Zhu.
2018. Interpreting CNN knowledge via an explanatory graph. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 32.

Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. 2019. Interpreting
cnns via decision trees. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 6261-6270.

Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui Luo, Ran Shu, and Xiaolan
Liu. 2017. Modeling and analyzing the influence of chunk size variation on
bitrate adaptation in DASH. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1-9.

Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen Jiang. 2021. {SENSEI}:
Aligning video streaming quality with dynamic user sensitivity. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). 303-320.
Yangi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-based and QoS-aware resource management for
cloud microservices. In Proceedings of the 26th ACM international conference on
architectural support for programming languages and operating systems. 167-181.

https://platform.openai.com/docs/guides/text?api-mode=responses
https://platform.openai.com/docs/guides/text?api-mode=responses
https://openai.com/index/sycophancy-in-gpt-4o
https://doi.org/10.1145/3626570.3626607
https://doi.org/10.1145/3696348.3696894
https://doi.org/10.1145/3696401

Agua: A Concept-Based Explainer for Learning-Enabled Systems SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

[80] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology
67, 2 (2005), 301-320.

343

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

Appendices are supporting material that has not been peer-
reviewed.

A APPENDIX

In this section, we provide additional analysis and design details
of Agua. Agua is a surrogate concept-based model that forms an
interpretable mapping from the controller’s embedding space h(x)
to the controller’s output space f(x).

A.1 Concept space analysis
ABR cC DDoS Detection
1.0 1.0 1.0
5‘0.8 0.8 0.8
2
2o.6 0.6 0.6
0.4 0.4 0.4

Base-3 6 12 24 36 48 Base-3 6 12 18 24 Base-3 6 12 18 30
line line line
Concept Embedding Size Concept Embedding Size Concept Embedding Size

Figure 13: Fidelity across concept size: We visualize the impact
of changing the size of the concept space on fidelity. We note that
the baseline indicates the fidelity of an explainer that only predicts
the most popular output. We see a fidelity-complexity trade-off,
with the fidelity improving with larger concept space sizes, but with
diminishing returns.

To understand how Agua attains its high fidelity, we investigate
the impact of the input concept space size on fidelity. We vary the
number of concepts and compare the fidelity against a baseline
that always selects the most frequent output. We plot the results in
Figure 13. We observe that with a small concept space, the fidelity
is low, similar to the baseline. However, as we include more con-
cepts that capture the reasons behind the controller’s decisions, the
fidelity improves and eventually saturates, showing diminishing
returns with larger concept spaces. This experiment illustrates the
fidelity-complexity trade-off in concept-based explainability, em-
phasizing the need to balance fidelity with the number of concepts
used while also ensuring high coverage of the controller’s output
space.

A.2 Text Description Validation

To understand how well the LLM captures human understanding
of the input states’ patterns and trends, we conduct a small-scale
validation experiment. Using ABR as our example domain, we col-
lect a set of controller inputs that cover the output space, obtaining
16 samples. We manually annotate each input, filling in the same
prompt given to the LLM. Then, we embed both the LLM and hu-
man descriptions using a text embedding model and compute the
concept similarity scores for each. We then measure their seman-
tic similarity by computing pairwise differences within them in

344

Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

this concept space. This allows us to understand the impact of the
prompts at the concept level. In cosine space, 0 denotes a complete
match, while 1 denotes an orthogonal vector. We visualize the dis-
tribution of differences in Figure 14. We observe that the differences
are small, with more than 80% of the samples having differences

1.0

0.8

0.6

0.4

Proportion of Inputs

0.2

0.0

0.0 0.2 0.4 06 08 10

Absolute Difference in Cosine Distances

Figure 14: Semantic Similarity of LLM Descriptions: We visualize
the semantic similarity of LLM descriptions to human descriptions in
the concept space, plotting the distribution of pairwise differences.
Note that cosine distance is measured in the range [0, 1], with a
difference of 1 indicating complete disjunction.

under 0.06. We also measure recall of the top 5 concepts, as we did
in Section 5.3, and find that it exceeds 0.72. This verifies that the
resulting LLM descriptions exhibit a significant semantic overlap
with human annotations, validating that the LLM can effectively
capture the input dynamics observed by humans at the concept
level. In the future, a large scale study involving operators can
further investigate this.

A.3 Prior Work

We presented the preliminary idea of concept-based explainability
for learning-enabled systems in a workshop paper [49]. In the
workshop paper, we provide a proof-of-concept implementation
for an ABR controller.

In this extended submission, we formalize and implement the
concept-based framework Agua. We also formalize the design pro-
cess and incorporate data-driven filtering and analysis with Agua.
We further extensively evaluate the effectiveness of concept-based
explainability in three concrete applications and demonstrate the
benefit of Agua in four practical use cases in this paper. Lastly, we
provide a deep dive into Agua’s workflow, assessing its robustness
at multiple points and evaluating its concept mapping.

Agua: A Concept-Based Explainer for Learning-Enabled Systems SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

System Instructions: You are a computer scientist trying to gather key information to use in an embedding model to identify patterns. Be straight to the point and avoid unnecessary words.
User Prompt: Explain the patterns in the state using the following key concepts for the environment of Adaptive Bitrate Streaming alongside common statistical metrics. Give an explanation for each
takeaway.
Here are the concepts:
(1) Network Throughput Volatility: ABR algorithms monitor network throughput. If the throughput significantly decreases, indicating a congested or poor-quality network, the algorithm may
choose the lowest quality to ensure continuous playback without buffering.
(2) Rapidly Depleting Buffer Health: The health of the video playback buffer is crucial. A rapidly depleting buffer, nearing empty, prompts the algorithm to switch to the lowest quality to
quickly refill the buffer and avoid playback interruptions.
(3) Low Content Complexity: For content where high resolution is less critical to user experience (e.g., talk shows versus high-action movies), an ABR algorithm may prioritize lower quality
streams to conserve bandwidth without significantly impacting perceived quality.
(4) Initial Playback Start: To minimize initial loading time, ABR algorithms often start with the lowest quality video and then adapt upwards as more information about network conditions and
buffer health becomes available.
(5) Emergency Fallback: In scenarios of extreme network degradation or unforeseen technical issues, sending the lowest quality video can serve as an emergency measure to maintain playback
continuity until conditions improve.
) Moderate Network Throughput: Indicates a network condition that, while not optimal, is stable enough to support a video quality above the lowest.
(7) Buffer Stability with Moderate Occupancy: The buffer is stable enough to prevent immediate interruptions but not so full as to warrant higher quality streams that might risk future
buffering.
(8) High Content Complexity: Certain content (fast motion or detailed visuals) may require a higher bitrate to maintain acceptable quality; a slightly higher than lowest quality may be chosen.
(9) Short-term Network Improvement: If the algorithm predicts short-term better network conditions, it may select a quality above the lowest to smooth the transition to better conditions.
(10) Fast Switching Mechanisms from Initial Playback: To minimize startup delay or adapt quickly, a low but not the lowest quality is chosen as a compromise.
(11) Adaptive Strategy for Network Fluctuations: In fluctuating networks, a medium quality compromise avoids the extremes of high and low bitrates.
(12) Smooth Switching Strategy: Allows smoother transitions, providing a cushion to adjust down without drastic quality drops.
(13) Network Congestion Avoidance: Anticipating congestion, the algorithm may choose a slightly lower bitrate to mitigate rebuffering.
(14) Robust Buffer Capacity: A large and stable buffer can handle the data throughput for the highest quality, ensuring smooth playback despite fluctuations.
(15) Content Suitability: Content like live sports or visually rich movies benefits significantly from higher quality, justifying a higher bitrate choice.
(16) Stable, High Network Throughput: High throughput supports high-quality video streams for a better experience.
State to identify patterns for:
Selected Video Quality (SSIM dB), max=25: [15.250, 15.807, 16.182, 16.998, 16.846, 15.762, 15.371, 15.926, 15.388, 16.080,]
Selected Chunk Size (Mb), max=3: [1.821, 1.949, 2.114, 1.395, 1.208, 1.914, 2.569, 2.291, 2.104, 2.066,]
Transmission Time of Chunk (seconds), max=20: [0.248, 0.160, 0.288, 0.201, 0.177, 0.212, 0.402, 0.320, 0.255, 0.256,]
Network Throughput (Mbps), max=3: [3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000,]
Client Buffer (seconds), max=15: [15.000, 15.000, 15.000, 15.000, 15.000, 14.998, 14.951, 15.000, 14.951, 15.000,]
Quality of Experience, max=5: [3.033, 3.046, 3.115, 3.161, 3.223, 2.974, 3.012, 3.061, 2.996, 3.064,]
Stalling (seconds), max=3: [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,]
Mean Upcoming Video Qualities (SSIM dB), max=25: [15.949, 15.480, 14.639, 11.056, 10.676,]
Mean Upcoming Video Sizes (Mb), max=3: [0.272, 0.587, 0.544, 0.891, 0.874,]
Explanation Template:
Network conditions: Initially starts off with (a/an) __ pattern, as observed from the features __. In the middle, it exhibits (a/an) __to (a/an) __pattern, as evident from features __ . In the end, it
exhibits (a/an) __to (a/an) __pattern, based on features __. Overall, the trend is __, indicating the presence of __ conditions.
Viewer’s video buffer: Initially starts off with (a/an) __ pattern, as observed from the features __. In the middle, it exhibits (a/an) __to (a/an) __pattern, as evident from features __. In the end, it
exhibits (a/an) __to (a/an) __ pattern, based on features __. Overall, the trend is __, indicating the presence of __ conditions.
Viewer’s Quality of Experience (environment reward or stalling behavior): Initially starts off with (a/an) __pattern, as observed from the features __. In the middle, it exhibits (a/an) __to
(a/an) __pattern, as evident from features __. In the end, it exhibits (a/an) __to (a/an) __pattern, based on features __. Overall, the trend is __, indicating the presence of __ conditions.
Upcoming video sizes: Initially starts off with (a/an) __pattern, as observed from the features __. In the middle, it exhibits (a/an) __to (a/an) __pattern, as evident from features __. In the end, it
exhibits (a/an) __ to (a/an) __pattern, based on features __ . Overall, the trend is __, indicating the presence of __ conditions.
Upcoming video qualities: Initially starts off with (a/an) __ pattern, as observed from the features __. In the middle, it exhibits (a/an) __to (a/an) __pattern, as evident from features __. In the end, it
exhibits (a/an) __to (a/an) __pattern, based on features __. Overall, the trend is __, indicating the presence of __ conditions.

Altogether, the patterns in the features indicate __network, __client video player, and __ video stream patterns. This correlates with the key conceptof _, , , ,and

Figure 15: LLM Prompt for an example ABR state, containing the concepts, the state information, and a predefined reasoning pattern for the
description.

345

SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu Jyothi

Network conditions:
o Initial pattern: Stable pattern, as observed from the features Network Throughput [3.000 consistently], indicating a constant high availability.
o Middle pattern: Stable to slightly fluctuating pattern, as evident from features Transmission Time [0.248 to 0.402], showing minor fluctuation
in delivery time.
o End pattern: Stable to slightly fluctuating pattern, based on features Transmission Time [0.320 to 0.256], suggesting slight fluctuations continue.
e Overall trend: Stable, indicating the presence of high-throughput conditions.

Viewer’s video buffer:
o Initial pattern: Stable pattern, as observed from the features Client Buffer [15.000 consistently], indicating full buffer.
o Middle pattern: Stable to slightly decreasing pattern, as evident from features Client Buffer [15.000 to 14.951], suggesting minor depletion.
o End pattern: Slightly increasing to stable pattern, based on features Client Buffer [14.951 to 15.000], showing recovery to full capacity.
e Overall trend: Stable, indicating the presence of robust buffer capacity.

Viewer’s Quality of Experience (environment reward or stalling behavior):
o Initial pattern: Increasing pattern, as observed from the features Quality of Experience [3.033 to 3.223], indicating improving experience.
o Middle pattern: Decreasing to increasing pattern, as evident from features Quality of Experience [3.223 to 2.974], showing temporary dip.
o End pattern: Increasing to stable pattern, based on features Quality of Experience [2.974 to 3.064], indicating recovery to stability.
e Overall trend: Stable, indicating the presence of acceptable conditions.

Upcoming video sizes:
o Initial pattern: Increasing pattern, as observed from the features Mean Upcoming Video Sizes [0.272 to 0.874], suggesting increasing sizes.
o Middle pattern: Increasing to stable pattern, as evident from features Upcoming Video Sizes [0.874], showing stabilization at higher values.
o End pattern: Consistent pattern, based on features Mean Upcoming Video Sizes [0.874], indicating no further change.
e Overall trend: Increasing, indicating the presence of higher quality content.

Upcoming video qualities:
o Initial pattern: Decreasing pattern, as observed from the features Mean Upcoming Video Qualities [15.949 to 10.676], indicating a reduction in

quality.

e Middle pattern: Stabilizing pattern, as evident from features Mean Upcoming Video Qualities [10.676], reflecting adjustment.
e End pattern: Stable pattern, based on features Mean Upcoming Video Qualities [10.676], with no further decrease.
e Overall trend: Decreasing, indicating reduced quality expectations.

Summary:
o Altogether, the patterns in the features indicate: Stable network, stable client video player, and adjusting video stream patterns.
o Key concept correlation: Robust Buffer Capacity, Moderate Network Throughput, Smooth Switching Strategy, Stable, High Network
Throughput, and Content Suitability.

Figure 16: The response for the example prompt given in Figure 15, following the structure and reasoning patterns of the
prompt. The entire response (with the key concept correlation redacted) serves as our text description to measure similarity.

346

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 Prior Explainers
	2.2 Shortcomings of Prior Explainers
	2.3 Concept-level View and Challenges

	3 Design of Agua
	3.1 Definitions
	3.2 Deriving Base Concepts
	3.3 Training Data for Agua's Model
	3.4 Learning Agua's Surrogate Model
	3.5 Generating Explanations with Agua
	3.6 Supported Classes of Explanations

	4 Experimental Setup
	5 Evaluation
	5.1 Agua's Explanations
	5.2 Applying Agua to enhance systems
	5.3 Agua Robustness

	6 Discussion and Limitations
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Concept space analysis
	A.2 Text Description Validation
	A.3 Prior Work

