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Abstract
Maintaining the highest levels of availability for content
providers is challenging in the face of scale, network
evolution, and complexity. Little, however, is known about
the network failures large content providers are susceptible
to, and what mechanisms they employ to ensure high avail-
ability. From a detailed analysis of over 100 high-impact
failure events within Google’s network, encompassing many
data centers and two WANs, we quantify several dimensions
of availability failures. We find that failures are evenly
distributed across different network types and across data,
control, and management planes, but that a large number of
failures happen when a network management operation is
in progress within the network. We discuss some of these
failures in detail, and also describe our design principles for
high availability motivated by these failures. These include
using defense in depth, maintaining consistency across
planes, failing open on large failures, carefully preventing
and avoiding failures, and assessing root cause quickly.
Our findings suggest that, as networks become more com-
plicated, failures lurk everywhere, and, counter-intuitively,
continuous incremental evolution of the network can, when
applied together with our design principles, result in a more
robust network.

CCS Concepts
•Networks ! Control path algorithms; Network reliabil-
ity; Network manageability;
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1. INTRODUCTION
Global-scale content providers offer an array of increas-

ingly popular services ranging from search, image sharing,
social networks, video dissemination, tools for online col-
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted.
SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil

© 2016 Copyright held by the owner/author(s).
ISBN 978-1-4503-4193-6/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2934872.2934891

laboration, online marketplaces, and cloud services. To sup-
port these services, they build data centers and WANs with
a global reach, both to interconnect their data centers and to
achieve client proximity. Providers optimize their networks
to provide high throughput, low latency, and high availabil-
ity. Some or all of these characteristics correlate with in-
creased revenue [3, 23].

While much has been written about content provider
network design and performance [18, 35, 6, 11], little
is known about network availability challenges faced by
content providers. What kind of availability guarantees do
content providers strive to achieve? What challenges do they
face in meeting these guarantees? What kinds of failures are
they susceptible to? How do they achieve high availability
in the face of these failures? This paper sheds light on some
of these questions based on operational experience at one
large content provider, Google.

Google runs three qualitatively different types of networks
(Section 2): data center networks, designed from merchant
silicon switches, with a logically centralized control plane; a
software-defined WAN called B4 that supports multiple traf-
fic classes and uses centralized traffic engineering; and an-
other global WAN called B2 for user-facing traffic that em-
ploys decentralized traffic engineering. We strive to main-
tain high availability in these networks: for example, for
user-facing traffic, Google’s internal availability target is no
more than a few minutes downtime per month.

Maintaining this high availability is especially difficult for
three reasons (Section 3.2). The first is scale and hetero-
geneity: Google’s network spans the entire globe, and at this
scale, failure of some component in the network is common
[9]. The second is velocity of evolution: the network is con-
stantly changing in response to increasing traffic demand as
well as the rollout of new services. The third is management
complexity: while the control plane has been evolving to deal
with complexity of the network, the management plane [12]
has not kept pace.

In spite of these challenges, our network infrastructure
and services deliver some of the highest availability levels in
the industry across dozens of individual services. We have
maintained this availability despite experiencing several sub-
stantial failure events. Examples of such failures include a
single bug taking out connectivity to a datacenter, a single
line card failure taking down an entire backbone router, and
a single misconfiguration resulting in the complete failure
of a WAN’s control plane. We carefully document (in post-
mortem reports) and root-cause each significant new failure,
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and also draw principles for avoiding, localizing, and recov-
ering from failures, such that subsequent failures are unlikely
and the ones that do take place are rarely visible to our end
users.

Contributions. In this paper, we make three contributions
by analyzing over 100 post-mortem reports of unique1 high-
impact failures (Section 4) within a two year period. First,
we present a quantitative analysis of different dimensions of
availability failures in Google (Section 5). We find that the
failure rate is roughly comparable across the three types of
networks we have (data center networks, B2, and B4). We
also find that each of these networks is susceptible to hard-
ware/data plane failures, as well as failures in the control
plane and the management plane. 80% of the failures last
between 10 mins and 100 mins, significantly larger than the
availability targets for our network. Nearly 90% of the fail-
ures have high impact: high packet losses, or blackholes to
entire data centers or parts thereof. Finally, we find that,
when most of these failures happen, a management opera-
tion was in progress in the vicinity.

Second, we classify failures by a few root-cause cate-
gories (Section 6), and find that, for each of data, control
and management planes, the failures can be root-caused to a
handful of categories. Examples of such categories include:
risk assessment failures; lack of consistency between
control plane components; device resource overruns; link
flaps; incorrectly executed management operation; and so
forth. We quantify the distribution of failures across these
categories, but also discuss in detail actual failures within
some categories. This categorization is more fine-grained
than simply root causing to hardware failure, software bug,
or human error, allowing us to draw important lessons in
improving network availability.

Third, we discuss high availability design principles
drawn from these failures (Section 7). Our qualitative
analysis and root cause categorization all suggest no single
mechanism or technique can address a significant fraction
of Google’s availability failures. First, defense in depth
is required to detect and react to failures across different
layers and planes of the network and can be achieved
by containing the failure radius and developing fallback
strategies. Second, fail-open preserves the data plane when
the control plane fails. Third, maintaining consistency
across data, control, and management planes can ensure safe
network evolution. Fourth, careful risk assessment, testing,
and a unified management plane can prevent or avoid
failures. Fifth, fast recovery from failures is not possible
without high-coverage monitoring systems and techniques
for root-cause analysis. By applying these principles,
together with the counter-intuitive idea that the network
should be continuously and incrementally evolved, we have
managed to increase the availability of our networks even
while its scale and complexity has grown many fold. We
conclude with a brief discussion on open research problems
in high-availability network design.
1Each post-mortem report documents a unique, previously unseen failure.
Subsequent instances of the same failure are not documented.
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Figure 1: Google’s Global Network

2. GOOGLE’S NETWORK
In this section, we discuss a simplified model of Google’s

network. This discussion will give context for some of the
descriptions of failures in later sections, but omits some of
the details for brevity.

The Networks. Conceptually, Google’s global network,
one of the largest in the world, consists of three qualitatively
different components (Figure 1): a set of campuses, where
each campus hosts a number of clusters; a WAN, called B2,
that carries traffic between users and the clusters; and an
internal WAN called B4 [18] responsible also for carrying
traffic among clusters. The rationale for the two WANs, and
for the differences in their design, is discussed in [18].

Google has, over the years, designed several generations
of cluster networks; in our network today, multiple genera-
tions of clusters co-exist. These cluster designs employ vari-
ants of a multi-stage Clos topology (see [35]), with individ-
ual switches using successive generations of merchant sili-
con. The bottom layer of the Clos network consists of ToR
switches providing connectivity to a rack of servers. The
middle layers of the Clos network have, over different gen-
erations of fabrics, consisted of differently-sized aggregate
sub-fabrics, typically called superblocks. The top layers of
these aggregation fabrics comprise core switches, or aggre-
gates thereof called spine blocks.

At a given geographical location or metro, Google may
have more than one data center. In earlier generations of
Google’s cluster design, servers within a single data center
were interconnected by a single fabric, and fabrics within a
metro were, in turn, interconnected through a cluster aggre-
gation fabric to deliver sufficient capacity within the metro.
The most recent generation can scale to interconnect mul-
tiple cluster fabrics. The cluster aggregation fabrics and the
newest generation fabrics, in turn, connect to the two WANs,
B2 and B4 via cluster aggregation routers (CARs). In the
older generations, a CAR was a separate aggregation fabric,
and itself a multistage Clos network. In the newest genera-
tion fabric, some of the super or middle blocks in the fabric
are used as the CARs.

Each CAR connects to a B4 switch [18] in a metro called a
B4BR (or B4 border router). A B4BR itself is also a multi-
stage switching network, built from merchant silicon. The
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B4 WAN consists of point-to-point bundles between B4BRs
in different metros. Each bundle is a complex interconnect
between two B4BRs, designed to achieve high aggregate ca-
pacity by aggregating a large number of physical links. Traf-
fic between clusters in different metros may traverse several
B4BRs, as described below.

Each CAR also connects to two B2 border routers
(B2BRs). These commercially available routers also
provide significant aggregate capacity using proprietary
internal switching fabrics. The B2 WAN consists of B2BRs
interconnected using a network of B2 core routers (B2CRs).
B2CRs also connect with edge routers which peer with
Google’s customers and transit networks. The interconnects
between all of these devices are also bundles of physical
links2 providing high aggregate capacity.

Control and Data Planes. The three networks differ
qualitatively in the design of their control and data planes.
Cluster networks consist of a logically centralized control
plane responsible for establishing forwarding rules at fabric
switches. The control plane is decomposed, for software
modularity reasons, into three components that act in
concert with each other: a Fabric Controller (FC) that
computes paths within the fabric; a Routing Agent (RA)
that speaks BGP and IS-IS with neighboring border routers
and performs IP route computation; and an OpenFlow
Controller (OFC) that programs switches by interacting
with OpenFlow Agents (OFAs) running on individual
switches. To achieve this programming, the OFC relies on
information from the FC and the RA. Packet forwarding
within the fabric uses ECMP in order to better utilize the
rich connectivity of Clos fabrics.

B4’s control plane also uses logical centralization, but
applies this centralization at two levels. Within a B4BR,
the control plane is organized as in clusters, consisting of
the same three components (FC, RA and OFC) as discussed
above, and data plane forwarding uses ECMP to better
utilize the aggregate capacity of the router. Across the B4
WAN, however, the centralized control plane is architected
differently because the WAN topology is qualitatively
different from that of clusters. Specifically, the control plane
consists of four components that work in concert [18, 21];
the B4 Gateway extracts network states from and programs
control plane state in B4BRs; a Topology Modeler computes
a model of the current WAN topology, including current
capacity constraints at and between B4BRs, using network
state extracted from the Gateway; a TE Server computes
site-level TE paths between B4BRs using the topology
model, as well as traffic demand presented to the network;
and a Bandwidth Enforcer (BwE, [21]) estimates the traffic
demand needed for the TE Server, and also enforces offered
load by applications to pre-determined limits. The data
plane uses encapsulation (tunneling) to effect TE paths,
and the B4BR control plane translates a site-level TE path
into one or more intra-B4BR fabric paths, or one or more
inter-B4BR bundles.
2In the rest of the paper, we use the term bundle to denote an aggregate
collection of physical links, and link to refer to a physical link.

Finally, the B2 network’s control plane is similar to that
of other large ISPs. B2 uses IS-IS internally, speaks E-BGP
with CARs, B4BRs, and external peers, and employs route-
reflection to scale BGP route dissemination and computa-
tion. Most traffic on B2 is engineered using MPLS tun-
nels. RSVP establishes or tears down the tunnels, and MPLS
auto-bandwidth [27] adapts tunnel capacities in response to
changes in demand. B2 uses MPLS priorities to accommo-
date different classes of traffic.

The Workload and Service Architectures. The three net-
works collectively serve two kinds of customers: internal
customers, and user-facing services. Internal customers use
the clusters for distributed storage and distributed computa-
tions; for example, search indices are stored in distributed
storage that may be replicated across clusters, and indices
are (re)computed using distributed computations running on
servers within data centers. Both storage and computation
can generate significant amounts of network traffic.

From the network’s perspective, user-facing services can
be viewed as a two-tier hierarchy. Front-ends receive user
requests; a front-end is a software reverse proxy and cache
that parses the service request, and determines which back-
end, of many, the request should be load-balanced to. Back-
ends (which themselves are typically multi-tiered) fulfil the
request and return the response. Load balancers determine
which front-end and back-end a request is sent to: typically
DNS load-balancing is used to load-balance requests from
users to the frontend, and a load-balancer keeps track of ag-
gregate requests and backend load to load-balance requests
from frontends to backends. This design permits scale-out
of services in response to increasing demand. More interest-
ing, the use of load-balancers provides a level of indirection
that enables operators to dynamically re-configure services
in response to network (or other failures). Thus, for exam-
ple, front-ends or back-ends in a cluster can be drained (i.e.,
users can be directed to other front-ends or back-ends) when
a large failure occurs. Finally, latency is a key performance
determinant for user-facing services: the user-facing service
hierarchy enables proximity of front-ends to users, enabling
low latency access to content.

We classify traffic on Google’s network into multiple
priority classes to accommodate the differing quality needs
of user-facing services and internal customers, and to
ensure that important traffic is always served. Generally,
user-facing traffic is assigned higher priority, and internal
traffic is assigned lower priority. Our WANs implement
traffic differentiation in slightly different ways: B4 uses
priority queueing in switches, together with traffic marking,
admission control, and bandwidth enforcement at the edges;
B2 relies on traffic marking and QoS implementation in
vendor gear, and ensures high priority traffic stays on the
shortest path by mapping low priority traffic to low priority
tunnels.

3. AVAILABILITY CHALLENGES
Maintaining high availability has been, and continues

to be, a major focus of network architecture and design at
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Google.

3.1 Network Availability Targets
The network strives to achieve different availability tar-

gets for different classes of traffic. Since network layer avail-
ability is only one component of the overall availability bud-
get of a software service, the network must meet a fairly
stringent availability target, of only a few minutes per month
of downtime, for at least some classes of traffic.

Google tracks availability targets for different traffic
classes at per-minute time-scales. On B4, we have sufficient
instrumentation (used to perform traffic engineering) to
directly measure the time durations for which the bandwidth
promised to services could not be satisfied between each
pair of B4BRs for each traffic class. For B2 and clusters, we
use a system similar to [14] to determine unavailability per
traffic class between each pair of clusters; our system uses
ping measurements between clusters, and can disambiguate
between unreachability within clusters and unreachability
on paths between clusters. It declares a cluster to be un-
available for a given traffic class if packet loss for that traffic
class, from all other clusters, is above a certain threshold.3

3.2 Challenges
There are four inter-related reasons why achieving avail-

ability targets is challenging within Google’s network.

Scale and Heterogeneity. Google’s network spans the
globe, is engineered for high content delivery capacity, and
contains devices from a wide variety of network vendors,
in addition to several generations of internally-developed
hardware and software. The scale of the network means
that there is a high probability of at least one device or
component failure, or some malfunctioning or misconfig-
ured software, within the network at any given instant in
time. We explicitly deploy devices from two vendors, for
hardware heterogeneity. Heterogeneity also arises from
scale: it takes time to upgrade the network, so at any instant,
the network might have 2-3 generations of, for example,
cluster technologies. While heterogeneity ensures that the
same issue is unlikely to affect multiple components of the
network, it can also introduce fragility and complexity. Gear
from different vendors require different management plane
processes, and their software may be upgraded at different
rates. Merchant silicon chips of different generations expose
slightly different capabilities that need to be abstracted
by switch software, thereby increasing complexity. This
heterogeneity is fundamental, given our evolution velocity
(discussed below), and we attempt to manage it using careful
software development and management place processes.

Velocity of Evolution. The rapid growth in global IP traffic
(5⇥ over the past five years, and similar projected growth
[8]), of which Google has a significant share, necessitates
rapid evolution in network hardware and software at Google.
This velocity of evolution is accentuated by growth in the
number of products Google offers. This velocity, coupled
3The loss threshold varies by traffic class from 0.1%-2%.

with scale, implies that, with high likelihood, either the soft-
ware or hardware of some part of the network is being up-
graded every day, which can further exacerbate fragility.

Device Management Complexity. A third challenge in
achieving high availability is the complexity of managing
modern networking devices, especially at higher levels
of aggregation. For example, in 2013, Google employed
multiple 1.28Tb/s chassis in their WAN [18]. Today, some
commercially-available devices support 20Tb/s [19]. In
response to increasing aggregation, control plane architec-
tures have achieved scaling by abstracting and separating
the control from the data plane, but management paradigms
have not kept pace, typically still considering the network
as a collection of independently managed devices. For
instance, most management tools still permit CLI-based
configuration, making scripting and automation error
prone, and management tools expose management at the
granularity of individual devices or individual switch chips
in a B4BR.

Constraints Imposed by Tight Availability Targets. The
tight availability targets of a few minutes a month can also
present an imposing challenge. For example, in some cases,
upgrading a border router can take more than 8 hours. Such
a long upgrade process introduces a substantial window of
vulnerability to concurrent failures. To avoid failures dur-
ing planned upgrades, we could drain services away from
affected clusters, but if we did this for every upgrade, given
the velocity of our evolution, it could affect our serving ca-
pacity. Manually draining services can also be error-prone.
So, many planned upgrades must upgrade in-place, which
can also increase network fragility.

3.3 Baseline Availability Mechanisms
At the beginning of our study, Google’s network em-

ployed several advanced techniques for ensuring high
network availability. All of these mechanisms are in
place today as well, but some of these have evolved, and
additional mechanisms have been put in place, based on the
experience gained from the availability failures described in
the rest of the paper.

First, our clusters and WAN topologies are carefully ca-
pacity planned to accommodate projected demand. We also
engineer our network to tolerate failures of key components
such as routing engines, power supplies or fans on individual
devices, as well as failure of bundles or devices, by using re-
dundant B2BRs and B2CRs. To be resilient to physical plant
failures, we use disjoint physical fibers and disjoint power
feeds.

Second, every logically centralized control plane compo-
nent (from the FC, RA, and OFC in the fabrics to BwE,
Gateway, TE Server, and Topology Modeler) is replicated
with master/slave replication and transparent failover. The
WAN control plane replicas are placed in geographically di-
verse locations. On B2, we use MPLS protection to achieve
fast re-routing in case of failures, and MPLS auto-bandwidth
to automatically adapt tunnel reservations to fluctuating de-
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mand [27].
Third, we have an offline approval process by which ser-

vices register for specific traffic priorities. Service devel-
opers receive guidelines on what kinds of traffic should use
which priority and they must specify traffic demands when
requesting approval for a priority. Once a service is granted
approval for a specific demand, BwE marks the service’s
traffic with the appropriate priority and rate-limits the traffic.

Fourth, we have several management plane processes de-
signed to minimize the risk of failures. We use regression
testing before rolling out software updates and deploy ca-
naries at smaller scales before deploying to the entire net-
work. We also periodically exercise disaster scenarios [20,
17] and enhance our systems based on lessons from these
exercises. We carefully document every management oper-
ation (MOp) on the network. Examples of MOps include
rolling out new control plane software, upgrading routers or
bundles, installing or replacing components like line-cards,
optical transmitters, or switch firmware. Each MOp’s doc-
umentation lists the steps required for the operation, an es-
timated duration, and a risk assessment on the likelihood of
the MOp affecting availability targets. If a MOp is deemed
high risk, operators drain affected services before executing
the MOp.

4. POST-MORTEM REPORTS
At Google, we have a process by which we document each

large failure in a post-mortem report and identify lessons
from the failure, so that its recurrence can be avoided or mit-
igated. As such, each post-mortem report identifies a failure
that impacted the availability targets discussed above, which
we term a failure event. The report includes the network lo-
cation of the failure, its duration, and its impact on traffic
volumes and packet loss rates as well as impact on services.
It is co-written by members of different teams whose sys-
tems were impacted by, or caused, the failure event. It con-
tains a timeline of events (if known) that led to the failure,
and the timeline of steps taken to diagnose and recover from
the failure. It also contains an accurate characterization of
the root-cause(s) for the failure. A single failure event can
have more than one root cause; operators and engineers con-
firm these root causes by reproducing the failure, or parts
thereof, either in the field, or in a lab. Many of the re-
ports also include detailed diagrams that give context, to a
broader audience, for the failure. Finally, the reports contain
a list of action items to follow up from the failure, which can
range from changes to software or configuration to changes
to management plane processes. Each action item is usually
followed up and discussed in a bug tracking system.

The process of writing a post-mortem is blame-free and
non-judgemental. Peers and management review each post-
mortem for completeness and accuracy [5]. This ensures
that we learn the right lessons from the failure and avoid fu-
ture occurrences of the same failure. Furthermore, not every
availability failure is documented in a post-mortem; if one
failure is a recurrence of another failure for which a post-
mortem report was written up, it is not documented because

there are no new lessons to be learned from this failure.

Dataset. In this paper, we have collected and analyzed all
post-mortem reports (103 in number) for network failures
in Google over the past two years. In the rest of the pa-
per, we present an analysis of this dataset, describe some of
the failure events to give the reader some intuition for the
magnitude and complexity of our availability failures, and
conclude with a discussion on design principles drawn from
these failures.

5. ANALYSIS OF FAILURE EVENTS

By Network and Plane. Figure 2 shows the distribution of
failure events across the three networks. No single network
dominates, and failures events happen with comparable fre-
quency 4 across all three networks. Clusters see the most
failures (over 40), but B4 saw over 25 failures. This implies
that there is no natural target network type for focusing our
availability improvement efforts.

Post-mortem reports also include a discussion of the root-
causes of the failure. From these descriptions, we attributed
failure events to one of three planes: data, control, and man-
agement. Data plane failures include hardware failures, and
failures due to device or operating system limitations. Man-
agement plane failures are those that could be attributed to a
MOp in process, and control plane failures result from in-
correct state propagation or other undesirable interactions
between control plane components.

Attributing failures to planes sometimes requires making
an informed judgement. For example, when a failure event
had multiple root-causes (e.g., a link failure triggered a bug
in the control plane), was this a data plane or a control plane
failure? In the example above, we attributed the failure to
the control plane, since the control plane arguably should
have been robust to link failures. However, if a link failure
coincided with planned network maintenance operation that
should have been safe due to redundancy but caused conges-
tive loss, we attributed the failure to the data plane.

Figure 2 also shows the distribution of failure events
across planes by network. All three networks are susceptible
to failures across control, data, and management planes
and no one plane dominates any network, with the possible
exception of B4 where control plane failures outweigh
data and management plane failures taken together. Thus,
availability improvements must target all three planes.

By Structural Element. Our networks have many struc-
tural elements: fabrics, ToRs, CARs, the B2BRs, and so
forth. Figure 3 shows how failure events are distributed
across these structural elements. There are five structural
elements which are each responsible for 10 failure events or
more. The B2BRs, the CARs and the fabrics occupy crit-
ical positions in the topology, and any failure in these can
result in degraded availability. Two other pain points in the
4Our post-mortem reports only document unique failures, not all failures.
As such, we use the term frequency to mean frequency of occurrence of
unique failures. For this reason also, we have not analyzed the frequency of
failure events over time, because we do not have data for all events.

62



B2

B4

Cluster

0 10 20 30 40
Count of Failure Events

N
et

w
or

k

Control
Data
Management

Figure 2: Distribution of failure
events by plane and network

B2 Bundle

B2BR

B2CR

B4 Bundle

B4BR

BwE

CAR

CPN

Fabric

Gateway

Topology Modeler

ToR

0 5 10 15
Count of Failure Events

N
et

w
or

k 
El

em
en

t
Figure 3: Distribution of failure
events by structural element

Blackhole

No Impact

Low Priority/High Loss

Low Priority/Low Loss

High Priority/High Loss

High Priority/Low Loss

0 10 20 30
Count of Failure Events

Se
ve

ri
ty

 o
f F

ai
lu

re

B2
B4
Cluster

Figure 4: Distribution of failure
events by impact and network

network are less obvious. The ToRs are the source of many
failures largely as a result of failures caused by buggy soft-
ware updates happening concurrently across multiple ToRs.
ToR software evolves relatively rapidly, so these contribute a
large share to network unavailability. We use an out-of-band
control plane network for the fabrics and B4, and failures
in this network can have significant impact on the control
planes and, therefore, on availability. Of the network-wide
control plane components, BwE accounts for a noticeable
number of failure events.

Impact. Failure events directly impact availability targets,
and we could have measured network availability, but post-
mortem reports do not describe all availability failures, only
large ones. For this reason, we categorize failure events into
six different impact classes: blackholes, where traffic to a
set of targets, or from a set of sources was completely black-
holed; high/low packet loss for high priority traffic; high/low
packet loss in traffic for lower priority traffic; and no impact
(discussed below). To distinguish high/low packet loss, we
used the loss thresholds used for the availability targets for
high and low priority traffic.

Figure 4 shows the distribution of failure events across
these categories. Our failure events often have huge impact,
with more than 30 failure events resulting in traffic black-
holes, often for entire clusters at a time. High packet losses
resulting in network overloads from failures also occur fre-
quently, across all classes of traffic. A small number of fail-
ure events have no impact: in these events, often, a latent
failure was discovered, but operators waited to fix it because
it posed no immediate threat. All networks are susceptible
to high-impact categories (blackholes and high packet loss),
with the exception of high priority traffic on B4, which does
not carry that traffic.

Duration. The duration of a failure event represents the
time from when it was first discovered to when recovery
from the failure was completed. In some large failure events,
such as those in which traffic to and from an entire cluster
is blackholed, operators first drain the entire cluster (i.e.,
reconfigure the load-balancer to stop sending any traffic to

services that cluster, preferring instances of services in other
clusters) before starting to root-cause the failure and initiate
recovery. In these cases, the duration measures when the
failure was fixed (e.g., the blackhole was repaired). Service
resumption after such failures can sometimes take much
longer (e.g., due to delay for data replication to catch up),
so we do not include it in the event duration. For other
failure events, operators attempt to repair the failure without
draining services; in these cases, duration measures the time
during which the effects of the failure (e.g., packet loss)
were evident.

Figure 5 plots the CDF of failure event durations by net-
work. About 80% of all our failure events had a duration
between 10 mins and 100 mins. When measured against
the availability targets discussed in Section 3.2, where the
target for high priority traffic was a few minutes of down-
time per month, these numbers quantify the challenges we
face in maintaining high availability within our networks.
The failure events whose durations were less than 10 min-
utes benefited either from operator experience in diagnosing
the root-cause, or from the fact that the cause of the failure
was obvious (e.g., because the impact of the failure was seen
after completing a step of a MOp). Failure durations over
100 mins usually represent events that resulted in low-levels
of packet loss for less important traffic, or, in some cases, a
latent failure which was discovered but had not impacted the
network yet. In these cases, operators chose to wait to fix
the problem because it was deemed lower priority, either by
waiting for developers to develop and test a software release,
or for vendors to ship a replacement part.

Finally, Figure 5 shows that, distributionally, failure
events in B2 and clusters are of shorter duration than in B4
(note that the x-axis is logscale), likely because the former
two networks carry high availability traffic, but B4 does not.

The Role of Evolution in Failure Events. We have dis-
cussed that one of the main challenges in maintaining high-
availability is the constant evolution in our networks. This
evolution implies frequent new software rollout, and soft-
ware bugs, frequent MOps on the network, and upgrades
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to network equipment. Accordingly, we categorized failure
events according to whether the event was caused by a soft-
ware bug, and whether an upgrade, a configuration change, a
MOp, or a software rollout was in progress at the time of the
failure. These categories are not mutually exclusive since
upgrades, configurations, and software rollouts are specific
forms of MOps; we added these two categories to highlight
the role that network evolution plays in failure events.

Figure 6 shows how these forms of evolution or results
thereof (e.g., bugs) distribute across different networks.
Nearly 70 of the failure events occurred when a MOp
was in progress on the network element where the failure
occurred. To give some context for this result and the rate
of evolution in our network: in a typical week last year, 585

network MOps were scheduled within Google. A MOp may
not always be the root-cause of the failure event. Bugs in
software account for nearly 35 failures, and other categories
of evolution are observed to a lesser extent (but in significant
numbers) and across all networks.

6. ROOT CAUSE CATEGORIES
In addition to characterizing failure events by duration,

severity, and other dimensions, we have also classified them
by root-cause category.6 A failure event’s root-cause is
one that, if it had not occurred, the failure event would not
have manifested. A single failure event can have multiple
root-causes, as we discuss later. For a given failure event,
the root-cause is determined from the post mortem reports.
Root-causes of individual failure events by themselves don’t
provide much insight, so we categorizedˆA root-causes into
different categories, Figure 7.

Categorizing root-causes can be subjective. All network
failure root-causes can be classified into hardware failures,
software bugs, and configuration errors, but, from this coarse
categorization, it is harder to derive specific insights into
how to counteract these root-causes, beyond generic sugges-
tions for adding hardware redundancy, hardening software,
and avoiding configuration errors. Hence, we use a finer-
grained categorization of root-causes that provide useful in-
sights into increasing network availability. We have left to
future work to explore whether other categorizations could
have yielded different insights.

Root-cause by network. Before discussing some of the
root cause categories in detail, we present the frequency
of occurrence of each category, and its breakdown by
network (Figure 7). Some root-cause categories manifest
themselves more frequently in failure events than others:
the frequency ranges from 2 to 13 in our dataset. Some
root-cause categories occur exclusively in one type of
5From this number, it would be incorrect to extrapolate the fraction of
MOps that lead to failure. Our post-mortems only document unique fail-
ures, and this number does not include automated MOps that are sometimes
not documented for review.
6A root-cause category roughly corresponds, in the dependability systems
literature, to a fault type. However, a fault is usually defined either as a soft-
ware bug or a hardware failure [10], but our root-cause categories include
incorrect management plane operations, so we have avoided using the term
fault.

network (e.g., cascade of control plane elements in B4), and
some in two networks (e.g., control plane network failure).
These arise from design differences between the three
networks. However, at least six of our root-cause categories
manifest themselves at least once in all three networks, and
this, in some cases, indicates systemic issues. Finally, the
root-cause categories are roughly evenly distributed across
the different planes (not shown): 6 data plane, 7 control
plane, and 6 management plane categories.

6.1 Data Plane Categories

Device resource overruns. Several failure events, across
all three networks, can be attributed to problems arising from
insufficient hardware or operating system resources. For
many years now, routers in the Internet have been known
to fail when injected with routing tables whose sizes exceed
router memory [16]. But, more subtle resource overruns
have occurred in Google’s networks, as this example shows.
Over-1. A complex sequence of events in a cluster triggered
a latent device resource limitation. Operators drained a fab-
ric link and were conducting bit-error tests on the link. Sev-
eral kinds of link drains are used in Google: lowering a link’s
preference, so traffic is carried on the link only when other
links are loaded; assigning a link infinite cost so it appears
in the routing table, but does not carry traffic; or, disabling
the corresponding interfaces. These choices trade speed or
capacity for safety: less risky operations can be drained by
reducing preference, for example, and these drains can be
removed faster. But these induce complex drain semantics
which operators may not understand. In this case, opera-
tors opted for the first choice, so the link being tested was
carrying (and intermittently dropping, because of the tests)
live traffic. This caused OFAs to lose their connectivity to
their OFC. When failing over to a new OFC through an
Open Flow Frontend (OFE), the OFE issued a reverse DNS
lookup before establishing the connection. However, this
lookup failed because its packets were being dropped on the
erroring link, and the thread performing the lookup blocked.
Soon, enough OFAs attempted to fail-over that OS limits
on concurrent threads were reached, and the entire control
plane failed. This event is notable for another reason: opera-
tors took a long time to diagnose the root cause because the
monitoring data collectors (for each cluster, two sets of mon-
itoring agents collect statistics from all switches and servers)
were both within the cluster, and when the fabric failed, vis-
ibility into the system was impaired.

Control plane network failure. B4 and clusters use an out-
of-band control plane network (CPN). Components like the
OFC, RA and FC communicate with each other and with
OFAs via the CPN, which is designed to tolerate single fail-
ures of the CPN routers and switches.

Complete failure of the CPN, where concurrent failure of
multiple CPN routers rendered the control plane components
unable to communicate with each other, caused three failure
events. These events resulted from a combination of hard-
ware component (line cards, routing engines) and operator
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actions. The rest of the events were caused by partial CPN
failure, and we discuss one such event.
CPN-1. In a B4BR, a partial CPN failure led to complete
traffic blackholing. Each B4BR contains three redundant
copies of the control plane components. During this fail-
ure event, one of the CPN routers for the B4BR was taken
down for power re-cabling. The CPN routers run VRRP
[15] which provides the abstraction of a virtual router and
transparently fails over when a CPN router is taken down.
However, the timer for this failover was longer than the live-
ness timeout between the redundant OFC instances, so two
OFC instances detected mutual disconnection and declared
themselves masters. All OFAs were able to talk to both
OFCs. This situation, an instance of a split brain [30], was
resolved by a watchdog script that watches for these multi-
master events. However, because of a software bug, the
new OFC master had inconsistent state for port switches (in
other words, it was unable to reconstruct network state on
handover), which resulted in wrong dataplane state on the
switches, leading to a large-scale failure across the B4BR.
Traffic from the attached clusters was failed over onto B2,
but this resulted in capacity overload and consequent packet
loss.

Other Categories. Beyond these, we have found four other
data plane root cause categories: concurrent hardware fail-
ures or hardware misconfigurations of interfaces, links, rout-
ing engines, optical switching components etc.; bad CoS
markings resulting from incorrectly marked traffic for class-
based differentiation; fabric asymmetry or freezes resulting
from data plane mechanisms like ECMP or link-layer flow
control; link errors or flaps in which transient bit errors or
flaps caused by LACP (IEEE 802.3ad, the link-aggregation
control protocol) cause difficult-to-diagnose failure events.

6.2 Control Plane Categories

Cascade of control plane elements. B4’s control plane has
several components. Several failure events have resulted
either in bad data being propagated through these compo-
nents, or a bottlenecked component triggering failures in

other components. We discuss one such cascade.
Casc-1. An example of bad data propagation occurred
during a network upgrade, when a WAN bundle between
two metros was being migrated from one B4BR to another
B4BR. This bundle is an aggregate of several links which
were re-configured. During this time, there was a transient
inconsistency between the link (i.e., topology) configuration,
and routing information (which used the older topology).
This inconsistency triggered a bug in the Topology Modeler,
which determines whether a B4BR originates an IP prefix
or not, based on information from the B4 Gateway. The bug
resulted in several IP prefixes being declared as originating
from more than one cluster. This dual origination broke an
internal assumption within BwE that an IP prefix originates
in a single cluster, so BwE assumed that B4 had failed, and
shifted all B4 traffic from/to several metros to B2, resulting
in an overload and consequent packet drops.

Lack of consistency between control plane elements. The
logically centralized control planes in B4 and clusters are
comprised of distinct components which maintain different,
but related, pieces of control plane state. For example, in a
cluster, the Route Aggregator (RA) maintains routing proto-
col state, which the FC uses to compute path or flow state.
Bugs in these implementations can introduce inconsistencies
between these pieces of state, which manifest themselves as
corrupt data plane state, resulting in traffic losses. In the
clusters, many of these are caught by lab and limited field
testing, and the ones that aren’t caught are extremely diffi-
cult to identify.
Consis-1. One failure event was triggered by such an in-
consistency that took several weeks to root-cause. In cluster
switches, data plane forwarding tables use next hop groups
to implement ECMP, where each group identifies a set of
links over which traffic is ECMP-ed. The RA, which re-
ceives BGP and IS-IS information, queries switches for the
next hop groups, then sends routes and associated next hop
groups to the OFC, which stores them in its NIB. To do
this, the RA maintains a mirror copy of next hop groups in
each switch. When all routes that use a nexthop group are
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deleted, ideally the RA should purge its copy of that nex-
thop group. Before doing this, the RA tries to delete the
nexthop group from the corresponding switch, but if that op-
eration fails transiently, the RA continues to cache the un-
used nexthop group. This particular failure was caused by
an implementation choice where, during a full routing table
update (e.g., caused by a BGP session reset) the RA would
not send unused nexthop groups to the OFC, which would
(correctly) delete it from its database. When a subsequent
new route announcement happened to use that unused nex-
thop group, the RA would advertise this to the OFC, which
would drop the route because it had no record of the nex-
thop group. Thus, the resulting flow table entries would not
be installed in switches, resulting in a blackhole. This rare
sequence of events was made a little bit more likely when a
routing configuration change made full routing table updates
by the RA much more frequent (in this case, whenever a par-
ticular community attribute changed). Such failures, which
result in a small number of bad flow entries, can be diffi-
cult to diagnose because ECMP and application-level RPC
retry mechanisms make such failures appear indistinguish-
able from intermittent packet loss.

Other Categories. Failure events also arise from: concur-
rent buggy control plane software push to switch, ToR, or
the centralized control plane components in clusters and B4;
incorrect traffic engineering, especially on B4, where, often
because of modeling errors, TE Server does not spread traffic
across available paths; lack of synchronization between the
data plane and control plane, where a data plane element
starts advertising routes before these have been completely
installed in the forwarding elements; and partial or complete
control plane failure where, especially during a MOp, many
instances of control plane components fail simultaneously
both on B4 and clusters.

6.3 Management Plane Categories

Risk assessment failure. Before planning a MOp, engi-
neers assess the risk associated with the operation. This
determines whether, for the duration of the MOp, there
would be sufficient residual capacity in the network to serve
demand. If the MOp is deemed high risk, one or more
services are drained from clusters that would be affected by
the capacity reduction. Thus, careful risk assessment can
allow in-place network upgrades without service disruption.

Early on, risk assessment was coarse grained and was per-
formed by operators, who would review the description of
the proposed MOp and estimate the residual capacity by the
reduction in hardware capacity due to the MOp. For exam-
ple, taking a B2BR offline reduces capacity by 50%. In
the early part of our study, operators would use a rule of
thumb: a residual capacity of less than 50% was consid-
ered risky (because the network is provisioned for single
failures). Later, risk assessments were based on compar-
ing residual capacity with historical demand. As the net-
work grew in complexity, these coarse-grained assessments
resulted in failures for various reasons, and were replaced by

a sophisticated automated tool.
Risk-1. This failure event illustrates the complexity of esti-
mating the residual capacity in a multistage fabric during a
MOp. In this MOp, designed to revamp the power supply to
a cluster fabric and scheduled to last over 30 hours, the steps
called for selectively powering down a fixed fraction (30%)
of fabric switches, bringing them back online, and powering
down another (30%), and so on. A simplified risk assess-
ment, and the one used for the MOp, predicted about 30%
capacity reduction, so engineers deemed the operation safe.
Unfortunately, this turned out to be wrong: for the given fab-
ric and power system design, this strategy actually reduced
capacity by more than 50% and should have required that
services be marked unavailable in the cluster to reduce traf-
fic levels.
Risk-2. Even for a single MOp, multiple risk assessment
failures can cause failures. During a MOp designed to split
a B4BR into 2 and scheduled to last five days, two concur-
rent risk assessment failures happened. The first was similar
to Risk-1: engineers underestimated the lowest residual ca-
pacity during the MOp by a factor of 2. Second, concurrent
failures in the network at other metros increased the amount
of traffic transiting this B4BR. Both of these combined to
cause packet loss due to reduced capacity.

Bug in Management Plane Automation. Given the inher-
ent complexity of low level management plane operation
specifications and the possibility of human error, we intro-
duced partial automation for management plane operations.
This automation essentially raises the level of abstraction.
Where before, for example, an operator would have to man-
ually upgrade software on each control plane component in
each of 4 blocks of a B4BR, scripts automate this process.
Operators are still involved in the process, since a complex
MOp might involve invocation of multiple scripts orches-
trated by one or more operators. This partial automation has
increased availability in general, but, because it adds an ad-
ditional layer of complexity, can cause large failures in B4
and clusters. As a result of some of these failures, we are ex-
ploring higher level abstractions for management plane au-
tomation, as discussed in Section 7.4.
BugAuto-1. This failure event illustrates the failure to co-
ordinate the evolution of the control plane and the manage-
ment plane. Many of these automation scripts are carefully
designed to drain and undrain various elements of the fab-
ric in the correct order: switches, physical links, routing
adjacencies, and control plane components. In one failure
that occurred when upgrading control plane software across
4 blocks of the CAR in a cluster, BGP adjacencies did not
come up after the execution of the script, resulting in the
cluster being isolated from both WANs. The root-cause for
this was that the automation script had been designed to care-
fully sequence drains and undrain drains on physical links,
but we had recently introduced a new supertrunking abstrac-
tion (of a logical link comprised of multiple physical links
from different switches in a CAR or B4BR) designed to im-
prove routing scalability, which required a slightly different
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drain/undrain sequence. Supertrunking had been enabled on
the CAR in question, resulting in the failure.

Other Categories. Other management plane root-cause
categories include: routing misconfigurations similar to
those explored in prior work [29, 31]; competing drains or
upgrades triggered by concurrent and mutually conflicting
MOps; incorrect/incomplete management processes where
the wrong set of instructions was used during an operation
on a MOp (e.g., an operation on one router used instructions
for a slightly different router model); and incorrectly
executed management process in which a human operator
made a mistake when invoking command-line interfaces or
management scripts.

7. HIGH-AVAILABILITY PRINCIPLES
As systems become more complex, they become more

susceptible to unanticipated failures [7, 32]. At least
in Google’s network, there is no silver bullet—no single
approach or mechanism—that can avoid or mitigate failures.
Failures occur roughly to the same extent across all three
networks, across all three networking planes, and there is
no dominant root cause for these failures, at least by our
classification. These findings have led us to formulate a few
high-availability design principles. In this section, we dis-
cuss these principles, together with associated mechanisms
that embody those principles.

7.1 Use Defense in Depth
Our results in Section 5 show that we need defense in

depth7 for failures: an approach where failure detection, mit-
igation or avoidance are built into several places or layers
within the network.

Contain failure radius. Redundant control plane elements
provide robustness to failures of components. In Google’s
network, concurrent failures of all replicas of control plane
elements are not uncommon (BugAuto-1). To control the
topological scope of such failures (their blast radius), we
(a) logically partition the topology of a CAR or B4BR, and
(b) assign each partition to a distinct set of control plane
elements.

There are several choices for partitioning these multi-
stage Clos topologies. One possibility is to partition a
B4BR into k virtual routers, where each such virtual router
is comprised of a 1/k-th of the switches at both stages.
Each virtual router runs its own control plane instance, so
that a failure in one of these virtual routers only reduces the
capacity of the B4BR by 1/k. One additional advantage
of this design is that a virtual router now becomes the unit
at which MOps are executed, so MOps on B4BRs can be
designed to minimize impact on capacity. Other partitioning
strategies include those that “color” links and switches (Fig.
20 in [35]) and assign different colors to different control
planes.

7This term is also used to describe techniques to secure complex software
systems [4] and has its origins in warfare.

Develop fallback strategies. Despite these measures,
large network-wide failures have a non-trivial likelihood in
Google’s network. To mitigate such failures, it is extremely
useful to have fallback strategies that help the network
degrade gracefully under failure. Several fallback strategies
are possible in Google’s network. When one or more B4BRs
fail, B4 traffic can fall back to B2 (as in Casc-1), where
CARs send traffic to B2BRs instead of B4BRs. Conversely,
when all B2BRs in a site fail, traffic can be designed to
fallback to B4. On B4, another form of fallback is possible:
when TE Server fails, traffic can fallback to IP routing.

Many of these fallback strategies are initiated by operators
using big red buttons: software controls that let an operator
trigger an immediate fallback. Given the pace of evolution
of Google’s control plane software, we design big red but-
tons in every new technology we deploy. Each time a new
feature is rolled out in the network (e.g., the supertrunking
abstraction), the older capability is preserved in the network
(in our example, an earlier trunk abstraction) and software
control (a big red button) is put in place which can be used
to disable the new capability and falls back to the older.

7.2 Maintain Consistency Within and
Across Planes

Our second principle is to maintain consistency of state
within the control plane or between the data and control
planes, and consistency of network invariants across the con-
trol and management planes.

Update network elements consistently. We have seen sev-
eral instances where errors in software or in management
plane operations have left network elements inconsistent.
On B4 and clusters, inconsistencies between control plane
elements have led to cascading failures (Casc-1), hard-to-
debug traffic blackholes (Consis-1) and rack disconnects.
Management operations can also leave a fabric in an incon-
sistent state; in one failure event, a MOp that re-configured
every switch in a CAR left two switches unconfigured, re-
sulting in packet loss.

Control plane and data plane synchronization can be
achieved by hardening the control plane stack, by either
synchronously updating the data plane before advertising
reachability, or waiting for the fabric to converge before
advertising external reachability. For control plane state
inconsistencies, program analysis techniques [25, 24] that
determine state equivalence can help catch some of these
inconsistencies. A complementary approach would be to
dynamically track state equivalence. For example, tracking
the difference in the route counts between the RA and the
OFC might have provided early warning of Consis-1. More
generally, automated techniques to track state provenance
and equivalence in distributed systems is an interesting
research direction. For the management plane, tools that
determine if, at the end of every major step of a MOp, fabric
state is consistent, can provide early warning of failure.
More generally, transactional updates where a configuration
change is applied to all the switches, or none can help avoid
these inconsistencies, but requires careful design of rollback
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strategies for management plane operations.

Continuously monitor network operational invariants.
Most failures are the result of one or more violations of fail-
ure assumptions, which can be cast as network operational
invariants and continuously tested for. For example, on B2,
we use anycast BGP to provide robust, low latency access to
internal services like DNS. An invariant, not widely known,
was that anycast prefixes should have a path length of 38.
A service violated this invariant, causing an outage of our
internal DNS by drawing all DNS traffic to one cluster.
Similarly, all failures resulting from bad traffic priority
markings violate previously agreed upon service-to-priority
mappings. Beyond that, there are many other control plane
design invariants: peering routers maintaining dual BGP
sessions to B2CRs, CARs being connected to 2 B2BRs,
OFCs having redundant connectivity to 2 CPN routers.
Unfortunately, many of these decisions are often implicit
rather than explicitly set as a requirement. Extracting
implicit requirements and design invariants from code or
configurations is an interesting research direction.

Monitoring systems for testing these invariants must go
beyond simply sending alarms when an invariant is violated;
in a large network, too many alarms can be triggered to the
point where operators stop paying attention to them. Rather,
these monitoring systems must be able to aggregate these
alarms (for example, determine how long a violation has
been occurring), reason continuously about the risk the vi-
olation presents, and either present to operators a prioritized
list of violations or take evasive action to minimize or avoid
the risk of failures from these violations.

Sometimes these operational invariants can be violated by
poorly designed automated management plane software. In a
few failures, automated software shut down all control plane
component replicas. Ideally, the automated software should
have refused to violate the invariant that at least one OFC
instance must be running.

Require Both the Positive and Negative. A number of our
substantial failures resulted from pushing changes to a large
set of devices, e.g., a misconfigured wildcard causing a drain
of hundreds of devices when the intention was to drain two.
Though we have sanity checks to avoid human mistakes,
broad changes are also occasionally necessary. For MOps
with potentially large scope, we now require two separate
configuration specifications for a network change coming
from two separate data sources. Draining a large number
of devices, for instance, requires specifying (a) all of the de-
vices to be drained and (b) an explicit, separate list of devices
to be left undrained. The management software performing
the MOp rejects configurations where there is inconsistency
between the two lists.

8The reason for this is interesting: we have several generations of cluster
designs in our network, and the number of hops between the cluster fabric
and B2 varies from 1-3 depending on the generation. Unifying the path
length to 3 permits the BGP decision process to fall through to IGP routing,
enabling anycast.

Management Homogeneity with System Heterogeneity.
Over the years, we developed different management systems
for our three networks. However, there was no common
architecture among the three systems, meaning that new
automation techniques and consistency checks developed
for one network would not naturally apply to another.
Hence, we are working toward a unified and homogeneous
network management architecture with well-defined APIs
and common network models for common operations. This
promotes shared learning and prevents multiple occurrences
of the same error. Moreover, the underlying system het-
erogeneity especially in the WAN, where control plane
and monitoring systems are developed by different teams,
ensures highly uncorrelated faults: a catastrophic fault in
one network is much less likely to spread to the other.

7.3 Fail Open
A repeated failure pattern we have seen is the case where

small changes in physical connectivity have led to large in-
consistencies in the control plane. In these cases, the control
plane quickly and incorrectly believes that large portions of
the physical network have failed. To avoid this, our systems
employ fail-open strategies to preserve as much of the data
plane as possible when the control plane fails.

Preserve the data plane. The idea behind fail-open is sim-
ple: when a control plane stack fails (for any reason), it does
not delete the data plane state. This preserves the last known
good state of the forwarding table of that node, which can
continue to forward traffic unless there are hardware failures
(e.g., link failures) that render the forwarding table incorrect.
Fail-open can be extended to an entire fabric, CAR, or B4BR
in the event of a massive control plane failure. In this case,
especially if the failure happens within a short time, switch
forwarding tables will be mutually consistent (again, mod-
ulo hardware failures), preserving fabric or device availabil-
ity. Fail-open can be an effective strategy when the time to
repair of the control plane is smaller than the time to hard-
ware failure. Two challenges arise in the design of correct
fail-open mechanisms: how to detect that a switch or a col-
lection of switches has failed open, and how to design the
control plane of functional (non-failed) peers to continue to
use the failed-open portions of a fabric.

Verify large control plane updates. In a few failures, con-
trol plane elements conservatively assumed that if part of
a state update was inconsistent, the entire state update was
likely to be incorrect. For example, in Casc-1, Topology
Modeler marked some prefixes within the network as origi-
nating from two different clusters. In response, BwE shifted
traffic from clusters in several metros on to B2, assuming
all of B4 had failed. In another, similar failure, TE Server
conservatively invalidated the entire B4 topology model be-
cause the model contained a small inconsistency, resulting
from the overlapping IP prefix of a decommissioned cluster
still appearing in the network configuration.

Conservatively and suddenly invalidating large parts of
the topology model can, especially in a WAN, significantly
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affect availability targets. To preserve availability, control
plane elements can degrade gracefully (a form of fail-open)
when they receive updates that would invalidate or take of-
fline large parts of the network. Specifically, they can at-
tempt to perform more careful validation and local correc-
tion of state updates in order to preserve the “good” control
plane state, for example, by inspecting monitoring systems.
In Casc-1, monitoring systems that conduct active probes
[14] or provide a query interface to BGP feeds from all BGP
speakers in the network could have been used to corrobo-
rate (or refute) the dual prefix origination or the overlapping
prefixes between clusters. If these methods had been imple-
mented, the impact of these failures on availability would
have been less.

7.4 An Ounce of Prevention
Our experiences have also taught us that continuous risk

assessment, careful testing, and developing a homogeneous
management plane while preserving network heterogeneity
can avoid failures or prevent re-occurrences of the same fail-
ure across different networks.

Assess Risk Continuously. In the past, risk assessment
failures have resulted from incorrect estimates of capacity
(Risk-1), bad demand assessments, changes in network state
between when the risk assessment was performed and when
the MOp was conducted (Risk-2), intermediate network
states during MOps that violated risk assumptions, or lack
of knowledge of other concurrent MOps.

Risk assessments must be a continuous activity, account-
ing for ongoing network dynamics, and performed at every
step of the MOp. This, requires a significant degree of visi-
bility into the network (discussed later), and automation to-
gether with the ability to either roll-back a MOp when risk
increases in the middle of a MOp (for example, because of
a concurrent failure), or the ability to drain services quickly.
Assessing the risk of drains and the risk of undrains during
failure recovery are also both crucial: in some of our fail-
ures, the act of draining services has caused transient traffic
overloads (due, for example, to storage services reconciling
replicas before the drain), as has the act of undraining them.

In general, risk assessment should be tightly integrated
into the control plane such that it can leverage the same state
and algorithms as the deployed control plane, rather than
requiring operators to reason about complex operations,
application requirements, and current system state. We
have found our risk assessment is substantially better
for our custom-built networks (B4 and clusters) than for
those built from vendor gear (B2), since for the former we
have detailed knowledge of exactly how drain and routing
behaves and over what time frames, while vendor gear
is more “black box.” This suggests that, for vendor gear,
risk assessments can be improved by increasing visibility
into both management and control plane operations that
would allow better emulation of the vendor behavior, or
by providing higher-level drain/undrain operations with
well-understood semantics. In cases where the semantics
of a management operation or of a particular protocol

implementation choice are unclear, risk assessment should
err on the side of overestimating risk.

Canary. Because we implement our own control plane
stack, we have developed careful in-house testing and
rollout procedures for control plane software updates and
configuration changes. Many of these procedures, such as
extensive regression testing and lab testing, likely mirror
practices within other large software developers. Beyond
these, we also test software releases by emulating our
networks [38] at reasonable scale, both during the initial
development cycle and prior to rollout.

Finally, especially for software changes that impact sig-
nificant parts of the control plane, we rollout changes very
conservatively in a process that can take several weeks. For
example, for changes to ToR software, we might (after lab
testing), first deploy it in a small fraction (0.1% of ToRs) in a
small cluster (each such test deployment is called a canary),
then progressively larger fractions and then repeat the pro-
cess at a larger cluster, before rolling it out across the entire
network. After each canary, we carefully monitor the de-
ployment for a few days or a week before moving on to the
next. Some failure events have occurred during a canary. For
updates to replicated control plane components like the B4
Gateway, for example, we update one replica at a time, and
monitor consensus between replicas. This approach enabled
us to avoid traffic impact in at least one failure event.

7.5 Recover Fast
A common thread that runs through many of the failure

events is the need for ways to root-cause the failure quickly.
This process can take hours, during which a cluster may be
completely drained of services (depending on the severity
of the failure). Operators generally root-cause failures by
(initially) examining aggregated outputs from two large
monitoring systems: an active path probing system like
[14], and a passive global per-device statistics collection
system. When a failure event occurs, operators examine
dashboards presented by these systems, look for anomalies
(unusual spikes in statistics or probe failures) in parts of the
topology near the failure event, and use these indicators to
drill-down to the root causes.

Delays in root-causing several failures have occurred for
two reasons. First, when a failure event occurs, the dash-
boards may indicate multiple anomalies: in a large network,
it is not unusual to find concurrent anomalies (or, to put
another way, the network is always in varying degrees of
“bad” state). Operators have, several times, drilled down on
the wrong anomaly before back-tracking and identifying the
correct root-cause (e.g., CPN-2). Second, monitoring sys-
tems sometimes don’t have adequate coverage. Given the
scale of Google’s system, and the complexity of the topology
interconnects, the active probing system sometimes lacks
coverage of paths, and the passive collector might not col-
lect certain kinds of statistics (e.g., link flaps) or might ag-
gregate measurements and so miss transients. Occasionally,
bad placement of the collectors can hamper visibility into
the network. In general, from each cluster, CAR or B4BR,
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statistics are collected at two topologically distinct clusters.
In a few of the failures (e.g., Over-1), the collection agents
for a CAR were both in the same cluster, and when the CAR
failed, the measurement data could not be accessed.

In addition to relying on generic monitoring systems that
may have to trade coverage or granularity for scale, auto-
mated root-cause diagnosis systems can be effective in re-
ducing mean time to recovery, thereby improving availabil-
ity. The design of such systems is currently under explo-
ration.

7.6 Continuously Upgrade the Network!
Our observation that touching the network leads to avail-

ability failures could lead to the following conclusion: limit
the rate at which the network evolves. This is undesirable
because: i) the network would be much more expensive than
necessary because capacity must be augmented significantly
ahead of demand, ii) the network would not support the fea-
tures necessary to support evolving application needs, such
as low latency and robust congestion control, and iii) the lim-
ited number of change operations would mean that the net-
work would treat change as a rare event handled by code
paths that are rarely exercised.

We have internally come to the opposite conclusion. Es-
pecially in a software-defined network infrastructure, and
with increasing automation of the management plane, there
is an opportunity to make upgrade and change the common
case. We strive to push new features and configuration into
production every week. This requires the capability to up-
grade the network daily, perhaps multiple times. This would
be required for example to address ab initio bugs but also
to support rapid development of new functionality in our lab
testbeds. Frequent upgrade also means that we are able to
introduce a large number of incremental updates to our in-
frastructure rather than a single “big bang” of new features
accumulated over a year or more. We have found the for-
mer model to be much safer and also much easier to reason
about and verify using automated tools. In addition, needing
to perform frequent upgrades forces operators to really rely
on automation to monitor and confirm safety (as opposed to
relying on manual verification), and dissuades them from as-
suming that the SDN is very consistent (for instance, assume
that all components are running the same version of the soft-
ware); this has resulted in more robust systems, processes,
and automation.

7.7 Research in High-Availability Design
Our lessons motivate several avenues for research in high-

availability design, a topic that has received less attention
than high-performance design. Indeed, each lesson embod-
ies a large research area, where our deployed solution repre-
sents one point in a large design space that future research
can explore. Examples of future directions include: optimal
ways to partition topologies and control domains to contain
the blast radius of a failure or ways to design topologies
with known failure impact properties; dynamic methods to
quickly assess when to fall back, and which traffic to divert
to achieve smooth, almost transparent fallback; methods to

statically reason about the consistency of control plane state,
and to track state provenance to ensure consistency; scalable
in-band measurement methods that permit fast and accurate
failure localization while themselves being robust to failures
and attacks; and techniques to detect fail-open robustly, and
to correctly reconcile control and data plane state in a failed-
open system upon recovery of the control plane.

A large, somewhat underexplored area in high-availability
design is the management plane. Future research here can
explore how to specify “intent” (i.e., what the network
should look like), how to configure and provision the
network based on intent, how to collect a snapshot of the
network’s “ground truth” [12] (i.e., what the network does
look like), and how to reconcile intent and the ground truth
because, in practice, even with automated configuration
and provisioning based on intent, there is likely to be
divergence between the two. Given the evolution of large
content providers, another area of research is automated and
accurate risk assessment, and mechanisms to permit safe,
yet frequent, network evolution using upgrade-in-place.

Finally, we identify a number of over-arching challenges.
How can we define and measure SLOs for a network in a
way that services or applications can use for their design?
When do we say that a network is really unavailable (when
it drops a few packets, when its throughput falls below a
certain threshold)? What techniques do we use to quantify
improvements in availability?

8. RELATED WORK
Generic reasons for failures of engineered systems [7,

32] include heterogeneity and the impact of interactions
and coupling between components of the system. Our
work focuses on a modern large-scale content provider; we
identify specific classes of reasons why our networks fail,
many of which can be attributed to velocity of evolution in
our networks.

Network failures and their impact have also been stud-
ied in distributed systems. From impossibility results [1], to
techniques for designing failure-tolerant distributed systems
[9], to experience reports on individual failures in practical,
large distributed systems [28, 36], these studies shed light
on real failures and their consequences for distributed sys-
tems. Bailis and Kingsbury [30] provide a nice discussion of
publicly disclosed failures in deployed distributed systems
that were likely caused by network partitions. In contrast to
this body of work, our work focuses on failures in the net-
work control, data, and management planes. While some of
our failures are qualitatively similar to failures seen in dis-
tributed systems (failure cascades and split-brain failures),
others such as failures of the control plane network, failures
in management plane operations, etc., do not arise or have
less impact in distributed systems. Similarly, many of our
lessons have their analogs in distributed systems, e.g., fall-
back strategies and fast fault isolation), but many do not, e.g.,
fail-open, dynamically verifying control plane updates, and
management plane automation.

Finally, the networking literature has, over more than a
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decade, explored various ways to assess and quantify fail-
ures in networks. A line of early work explored link failure
characteristics in medium to large-scale ISPs by examining
the dynamics of IGPs [33, 26, 39] and EGPs [22]. Not all
link failures result in loss of network availability, and our
work explores a much broader class of root-causes for avail-
ability failures, ranging from device resource limitations to
control plane bugs and management plane errors. More re-
cent work has explored link, device, and component failures
in enterprises [37], academic networks [34], and data centers
[13], using other sources of information, including syslog
errors, trouble tickets and customer complaints. Our data
source, the post-mortem reports, are qualitatively different
from these sources: our reports are carefully curated and in-
clude root-cause assessments that are typically confirmed by
careful reproduction in the lab or in limited field settings.
Thus, we are able to broadly, and more accurately assess root
cause across different types of networks, with different con-
trol plane designs and management plane processes. Other
work has explored the role of misconfiguration in network
failures [29, 31], and methods to reduce misconfiguration er-
rors with shadow network configurations [2]; control plane
misconfiguration is but one of the root causes we study.

Finally, more recent work has explored the impact of man-
agement plane operations on network health [12]. This work
identifies management plane operations by changes to de-
vice configurations, or by changes to network topology, and
network health by the number of device alerts across the
network, then applies statistical causality tests to determine
which management plane operations can impact health. Our
work differs in many ways. First, in addition to our use of
human curated post-mortems, the MOps we discuss in this
paper are fully documented operations that are reviewed and
require approval so we need not infer whether a management
operation was in effect. Second, most of our failures had an
availability impact, while it is unclear to what extent mea-
sures of network health reflect availability. Finally, our work
attempts to unify root-cause categories across different net-
work types, and across the data and control planes as well,
not just the management plane.

9. CONCLUSIONS
By analyzing post-mortem reports at Google, we show

that failures occur in all of our networks, and across all
planes. Many failures occur when the network is touched,
but management operations on networks are fundamental
at Google given its evolution velocity. These failures have
prompted us to adopt several high-availability design prin-
ciples and associated mechanisms ranging from preserving
the data plane upon failure, containing the failure radius,
and designing fallbacks for systemic failure, to automated
risk assessment and management plane automation. Our
experience suggests that future networks must account for
continuous evolution and upgrade as a key part of their
availability architecture and design.
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