
Leveraging Service Meshes as a New Network Layer
Sachin Ashok

University of Illinois at
Urbana-Champaign

P. Brighten Godfrey
University of Illinois at

Urbana-Champaign and VMware

Radhika Mittal
University of Illinois at
Urbana-Champaign

ABSTRACT
As modern cloud services have scaled out, applications have
moved from relatively monolithic designs to highly modular-
ized fleets of microservices that communicate among each
other to perform application-level tasks. These microservices
effectively form a network at the application layer, and ser-
vice mesh frameworks have recently emerged to factor out
microservices’ common communication functionality.
This paper seeks to highlight the emergence of service

meshes as what is effectively a new layer in the networking
stack, and the associated new challenges and opportunities.
As a case study, we leverage the fact that service meshes can
be better informed about application needs, and design a sys-
tem that utilizes provenance tracing within the service mesh
to perform cross-layer prioritization of latency-sensitive re-
quests, within an application serving a mix of workloads.
Broadly speaking, we believe that as applications factor out
communication into service meshes, an exciting new domain
is opening that can utilize techniques from the networking
community to improve application performance.

ACM Reference Format:
Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. 2021. Lever-
aging Service Meshes as a New Network Layer. In The Twentieth
ACM Workshop on Hot Topics in Networks (HotNets ’21), November
10–12, 2021, Virtual Event, United Kingdom. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3484266.3487379

1 INTRODUCTION
Cloud-based services today are built in functional modules
called microservices that carry out narrow roles making
them easier to develop in focused teams, to deploy and up-
grade one at a time, and to scale out and load balance. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487379

example, a Cisco network monitoring product has hundreds
of individual microservices [29] and Uber has over 1000 [44].

To serve any particular request, many of these numerous
microservices may be involved across many physical hosts,
and they must interact with each other. Thus, microservice
architectures imply that network communication becomes
more intrinsic to the application’s internal functioning. In-
deed, inter-microservice communication can be said to form
an application-level network, including multiple networking
functions such as name resolution, load balancing, and net-
work security. This, however, places a burden on application
developers, which has led to the emergence of servicemeshes.
Service meshes lessen the burden on application developers
by factoring out microservice communication functions into
a separate process called a sidecar proxy. Each application
microservice is paired with a sidecar, which performs all
inbound and outbound network communication.

The purpose of this paper is to spotlight service meshes as
an emerging new network layer, and to demonstrate how this
layer has opportunities and challenges that differ from lower
layers of the stack, but that can be informed by long lines of
networking research. In particular, compared to lower layers,
service meshes provide more direct visibility, an avenue to
understand applications’ needs, a point of coordination with
lower layers, and easier extensibility. They also lead to new
challenges such as performance overhead and cross-stack
coordination of shared resources.

We design a case study which demonstrates several of the
above opportunities. Sharing infrastructure across tasks with
different needs – low latency for real-time and user-facing
services, while also serving jobs that mainly require high
throughput – is a persistent challenge. Despite many designs
at the network layer, deployment has been out of reach of
most applications and enterprise networks, in part because
these designs require application-specific information. We
sketch a design that leverages service meshes to address this
problem, through their ability to closely coordinate with
applications, and perform cross-layer optimizations within
each sidecar proxy. Our early prototype significantly reduces
the latency of user-facing requests when the application is
processing a mix of workloads.
Overall, we hope this paper will serve as a call to the

network community to leverage the emerging opportunities
provided by service meshes, and recognize and embrace this
new layer in the stack.

229

https://doi.org/10.1145/3484266.3487379
https://doi.org/10.1145/3484266.3487379

HotNets ’21, November 10–12, 2021, Virtual Event, United KingdomSachin Ashok, P. Brighten Godfrey, and Radhika Mittal

Ingress
Traffic

Mesh Traffic

Service Mesh Control Plane

Sidecar

Service A

Sidecar

Service B

Egress
Traffic

Service Mesh Data Plane

Certificate
Management

Configuration
Management …Service

Discovery

Figure 1: Service mesh architecture, using Istio as an
example. Image redrawn from [25].

2 BACKGROUND
Microservice architectures took shape alongside container
orchestration frameworks such as Kubernetes [33]. While
Kubernetes focused on orchestrating units of compute (con-
tainers), it generally did not provide network functionality.
App developers would have to implement their own versions
of a variety of communication functions, such as security,
monitoring, and steering traffic to appropriate microservice
instances. This problem became more pressing as microser-
vices architectures matured and were more broadly adopted.

The raison d’être of the service mesh was to factor out mi-
croservice communication needs, so a single implementation
could be leveraged by many applications. Two early open
source service meshes, Linkerd [37] and Istio [24], launched
in 2016 and 2017, respectively [36]. Today, Istio is the most
widely used, and there are a variety of commercial alterna-
tives [11, 17, 18, 49]. These systems have a generally common
set of core functionality, which we sketch next.

In a generic service mesh architecture (Fig. 1), the control
plane offers the administrator a centralized location for defin-
ing configuration which is then pushed to the individual data
plane elements. The control plane also performs certificate
generation, service discovery, metric collection, and other
functions which in the case of Istio are themselves built as
individual microservices.
The data plane is comprised of a set of “sidecar” prox-

ies (called Envoy in Istio). A sidecar is a userspace process
running in a container. Each application microservice in-
stance is paired with a sidecar instance, so that all of the
microservice’s communication is handled via its sidecar –
both inbound and outbound, and both internal and external
(outside the service mesh) requests. Of course, the same func-
tions could have been provided in a library within the app
process, rather than a sidecar. The advantages of a sidecar are
similar to the advantages of microservices in general: they
facilitate easier upgrades (i.e., the sidecar can be deployed
and upgraded without modifying the application) and better

modularity of developer teams, and are agnostic to the app’s
code language and frameworks.

When receiving a request to or from the microservice, the
sidecar can perform a variety of functions, such as: service
discovery; security in the form of enforcing centrally-defined
policies that specify which services are permitted to com-
municate; traffic encryption; routing requests to appropriate
microservice instances; load balancing between replicas; re-
silience, such as retrying requests and implementing a “cir-
cuit breaker” pattern to avoid underperforming instances;
and monitoring requests and their key performance metrics.

3 OPPORTUNITIES AND CHALLENGES
Architecturally, we view the service mesh as a new layer in
the network stack between application and transport (§3.1).
Importantly, this layer comes with new capabilities that have
previously been persistent challenges for network infrastruc-
ture generally, and for research proposals in particular. We
outline some of these opportunities, with research directions
that they enable (§3.2-3.5) as well as new challenges (§3.6).

3.1 An architectural perspective

Application
Service Mesh
Transport

Virtualization
Network
Link

Physical

Figure 2: A modern “cloud
native” network stack.

We argue it’s useful
to think of the service
mesh as a new layer in
the network stack be-
neath the application
(Fig. 2). In general, a
layer is an abstraction
that provides function-
ality used by higher-
level modules, and im-
plements that functionality on top of simpler functionality
provided by other modules [42]. In the case of service meshes,
this layer sits between the application layer and the transport
layer.1 An app built using the service mesh communicates
via the service mesh API (so for example, it no longer has to
directly open transport connections to remote services). The
service mesh API provides relatively high level abstractions
like “get the response to this HTTP request from service
X”. The implementation of this API in the sidecar involves
sorting out lower-level details, like exactly where the service
X is located, which instance of service X is best to talk to,
and how to provide resilience when a connection drops. The
sidecar implements these using the lower layer, specifically
transport connections to various other processes.
1In fact, the picture is a bit more complicated. The app and sidecar are
usually in different containers, with a transport connection between them.
However, the app-to-sidecar connection can be seen as an architecturally-
negligible detail which could have been a library call, as indeed it is in
Netflix’s software suite [6]. Either way, the sidecar still ends up taking an
HTTP message from the app layer as input.

230

Leveraging Service Meshes as a New Network Layer HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

This view does not fit the specific factorization of layers
defined in the OSI 7-layer model. OSI layers 5 and 6 (ses-
sion and presentation) also sit between the transport and
application layers. Service meshes share some features with
the session layer (e.g., connection establishment and restart)
and the presentation layer (e.g., encryption). However, nei-
ther layer is a good description of a service mesh, which
provides other features like security policy enforcement and
performance-aware load balancing. Our view is that many
different layered architectures are possible, and the layering
used in practice has evolved over time. The Internet itself
never exactly matched the OSI model, and has evolved in
other ways – for example, cloud network virtualization ar-
guably forms a layer of its own [43, 46, 48] – and service
meshes are another evolving layer.

A service mesh could alternately be viewed as simply an-
other set of microservices running in userspace alongside
the application. This description is correct but incomplete: it
misses that the service mesh abstracts out communication
functionality. That abstraction, which is a property of layer-
ing, helps highlight the opportunity to utilize service meshes
to observe and enhance communication across the whole
application. We discuss some of these opportunities next.

3.2 Better visibility
Function calls in a monolithic architecture in many cases
become network communication in the microservice archi-
tecture. This can reveal a rich picture of the application’s
internal operations, even with purely passive observations.
As the layer directly below the application, the service mesh
is ideally positioned to capture this information. Lower lay-
ers, like the physical network, can also observe more about a
microservice-based application than a monolithic one. How-
ever, lower layers will have less visibility than the service
mesh due to lacking context of API calls, encryption, and
because the service mesh can coalesce multiple requests into
a single transport-layer flow (among other reasons).

This visibility could be used for monitoring, troubleshoot-
ing, and root cause analysis. For example, [4] described a
performance telemetry system for Gmail and certain other
Google services which tracks the distributed call tree, and
performs “coordinated bursty tracing” across multiple layers
of the stack in a coordinated interval of time. Such techniques
might be adaptable to service meshes, via distributed tracing
already implemented in service meshes [23] and leveraging
sidecars to trigger cross-layer logging, thus making [4] or
similar proposals available to a wider swath of applications.

3.3 Better knowledge of application needs
Many enhancements to network performance, such as
priority-aware flow scheduling [8, 19, 51], require some

knowledge of application needs. As they are positioned close
to the application in user space, service meshes may be able
to obtain this knowledge. For example, service meshes di-
rectly handle HTTP-level service requests and responses,
and are informed of a set of acceptable destinations (repli-
cated microservices in a load balancing pool) rather than just
a single IP address. Applications could also directly signal
preferences via the app-to-sidecar API.

This suggests a specific research direction: utilizing knowl-
edge of app needs or objectives in the service mesh to inform
and control lower layers of the stack. For example, knowl-
edge of flow priority or sizes could help optimize transport,
flow scheduling, and network-layer traffic engineering (TE).
The service mesh API can allow for explicit signaling

of this information from the app, but some apps may not
provide it. Thus, another open problem is to automatically
infer what’s best for the application, by leveraging the app
information innately available to the service mesh (e.g., re-
quest sizes, headers, response time statistics) and perhaps
the ability to run “in vivo” experiments on a small fraction
of requests. (Inference of app needs can also be seen as an
important special case of better visibility; §3.2.)

3.4 Easier evolvability
Adding and modifying functionality in a deployable way is a
recurring difficulty for network infrastructure protocols and
systems. One reason is that many other systems are built on
top of the network infrastructure and “bake in” assumptions
about its behavior, and this could be true of service meshes
as well. However, service meshes have several distinct ad-
vantages. First, they run in user space on hosts, making them
more accessible compared to changes to the kernel, network
virtualization, or physical network.2 Second, service meshes
communicate with the layer above (i.e., apps) via APIs which
are easily extensible with optional parameters. At lower pro-
tocol layers, even a simple change like adding a header field
often involves careful work and perhaps standardization pro-
cesses, and coordinating these changes with higher layers
can be even harder in practice.
This extensibility suggests an exciting direction of lever-

aging service meshes as a place to implement network func-
tionality that has been otherwise hard to deploy within the
network. Numerous recent congestion control and trans-
port protocol proposals [5, 13, 28, 35, 39] could be utilized in
the sidecar-to-sidecar channel while leaving the application
itself unmodified. Other examples implementable in the side-
car could include adaptive replica selection [30] and issuing
redundant requests [50] to cut tail latency.

2Indeed, even with advances in programmable switching, changes to most
network infrastructure are completely inaccessible to most software devel-
opers (consider, for example, users of public cloud).

231

HotNets ’21, November 10–12, 2021, Virtual Event, United KingdomSachin Ashok, P. Brighten Godfrey, and Radhika Mittal

3.5 Coordination with lower layers
Just as the servicemesh can benefit from knowledge of the ap-
plication, it may also benefit from knowledge of lower layers.
For example, a physical network SDN controller could pro-
vide information about the level of congestion along network
paths, and the service mesh could use this to control request
rates or adjust load balancing among service instances. A
more advanced optimization would be to jointly optimize
network TE and sidecar load balancing.
At the transport layer, [15] proposed a related method:

using an SDN controller’s information about link utilization
to adjust TCP parameters. Such cross-layer coordination,
especially between a host and a network operator, is usually
difficult to deploy but may be made possible through service
meshes due to their easier evolvability (§3.4), and potentially
the ability to leverage the service mesh’s central controller as
a more convenient point of interface. In addition, the service
mesh has richer control mechanisms (e.g., selecting among
replicas) that could lead to more optimal solutions.

3.6 New challenges
In addition to opportunities, service meshes introduce new
problems. Among the most obvious is the increased la-
tency imposed by the two sidecars interposed between each
application-layer end-to-end communication, which is in the
range of 3 msec at the 99th percentile for Istio [26]. While
this is acceptable for many applications, it could be costly
for latency-sensitive apps involving tens of hops among mi-
croservices. Recent research on low-latency stacks [7, 16, 21]
could have an impact here.

As a network in itself, the service mesh covers many func-
tions that are similar to traditional network tasks, such as
routing and load balancing, transport, and backpressure, lead-
ing to several challenges. The right algorithms for these mod-
ules may be non-obvious. Here, experience in the networking
communitymay be relevant; for example, Structured Streams
Transport [13] could assist the sidecar in multiplexing many
requests over a single transport connection. Second, these
functions which are similar to lower layers, may in fact be
controlling overlapping sets of resources, leading to poten-
tial conflicts. Verification has been proposed for this sub-
problem [38] but a principled understanding of how to safely
decompose dynamic control is needed.

4 CASE STUDY: CROSS-LAYER
PRIORITIZATION

To make the ideas of §3 more concrete, we present
a case study: providing request-level prioritization in a

microservice-based application, via cross-layer optimiza-
tions. Our design takes advantage of several of the opportu-
nities outlined above: better knowledge of application needs,
easier evolvability, and cross-layer coordination.

4.1 Motivating Scenario
Consider a hypothetical microservice-based e-commerce ap-
plication. The app serves user requests where fast response
is critical. We refer to this as the latency-sensitive workload:
response times on the order of roughly 200 ms are desirable.
At the same time, analytics workloads scan large sets of data
to optimize advertising and user product recommendations,
and other jobs write periodic updates to the product database
and collect logs for system monitoring. Unlike the latency-
sensitive workload, it is acceptable to delay these tasks by
minutes or perhaps even hours. However, all tasks share
many of the same microservices (e.g., caches and databases),
sometimes buried several hops deep in the tree of API calls.
In such scenarios, the main method of achieving high

utilization while also satisfying latency-sensitive services
is to prioritize the latter. This can apply to compute, net-
work, or storage bottlenecks. Focusing here on the network
(which can be a significant part of the problem, especially
with multi-tiered microservice-based apps [14]), a large body
of work has explored prioritization, including via traffic pri-
ority classification, flow scheduling, “coflow” scheduling,
routing, or combinations of these [2, 8, 9, 19, 20, 27, 51].
However, deployments have been limited. Large providers,
notably Google and Azure, have implemented systems that
use explicit knowledge of internal applications and extensive
customization of the physical network to prioritize classes
of applications in inter-datacenter WANs [20, 27]. Outside
of these, app-informed prioritization is not generally avail-
able to users of enterprise data centers or public cloud. Even
though the low-level mechanism of prioritized queues is
supported in OSes and off-the-shelf physical switches, mech-
anisms are lacking to automatically understand application
needs and to appropriately dynamically control lower layers
of the stack, in a deployable way.

4.2 Design
We sketch the design of a system that leverages and extends
service meshes to optimize request processing for latency-
sensitive and latency-insensitive tasks. The basic idea in-
cludes three components:
(1) Classify applications’ performance objectives at the

ingress point of the request.
(2) Carry these performance objectives through the entire

system with each request, via application-level tracing
through the service mesh.

(3) Implement cross-layer optimizations, such as:

232

Leveraging Service Meshes as a New Network Layer HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

External
Requests

Latency
Sensitive

Jobs

Batch
Analytic

Jobs

Front
end

Reviews
1

Reviews
2

Details

Ratings

Istio / Envoy
Proxy

Kubernetes
Pod

Multiple
Instances

Docker
Containers

Istio Ingress
Gateway

Kubernetes
Cluster

External
Internet

1
3

2

3

3

4

4

Network
Bottleneck

Figure 3: The e-library microservice running Istio.

(a) Service mesh: request-level prioritization and im-
proved traffic routing among service instances.
(b) Transport: utilization of scavenger transport proto-
cols [34, 39, 45] for latency-insensitive requests.
(c) OS/hypervisor: packet-level prioritization of latency-
sensitive flows at the (virtual) NIC.
(d) Physical network: Flow scheduling and TEwith aware-
ness of packet priority.

Optimization (d) would involve the service mesh supply-
ing knowledge of flow priority to the physical network, either
in-band (packet tagging) or out-of-band (an API call into the
SDN controller). The physical network can then schedule
and route flows better, similar to [20, 27].
This design illustrates some of the advantages described

in §3. First, it uses knowledge of application needs through
tracing the provenance of requests. Second, it uses the easily
evolvable sidecar proxy to make changes, including across
layers, for example bymodifying the sidecar-to-sidecar trans-
port protocol and OS packet handling without modifications
to the application. Finally, the overall architecture takes ad-
vantage of the service mesh being its own layer of the stack,
so the benefits of this functionality can apply to many apps
without app developers needing to understand the details.

4.3 Prototype

Setup. We run an e-library microservice (based on Istio’s
sample bookinfo application [22]) on a single 32-core Intel
Xeon Silver server running Ubuntu 16.04. We orchestrate
the microservice using Kubernetes KIND [32]. All inter-pod
communication traverses through 15 Gbps emulated links,
except for a single bottleneck set to 1 Gbps. Kubernetes co-
locates all containers within a pod on the same host, and
hence intra-pod communication goes through the localhost.

As shown in Fig. 3, the ingress gateway of themicroservice
routes the incoming (external) requests to the application
front end (stage 1 and 2). The front-end processes the re-
quests and, to serve them, spawns internal requests to other

components (stage 3). Requests propagate through the ap-
plication as per the request tree (stage 4), and the responses
propagate back to the end-user.

We use the wrk2 [47] load generator to generate two differ-
ent workloads that hit the ingress gateway simultaneously:
(i) latency sensitive requests representing users traversing a
website, and (ii) latency-insensitive requests (≈ 200× larger)
representing a batch analytics job. We use uniformly random
inter-arrival times for both, with average request per second
(RPS) levels ranging from 10 to 50 across experiment runs.
Each experiment run lasts 5 minutes excluding warm-up and
cool-down periods. The aforementioned bottleneck is set be-
tween the reviews and the ratings components, so network
responses of both workloads compete for bandwidth here.
Implementation. Our prototype implements a version of
the three design components (§4.2) as follows.
(1) The application handling requests at the ingress (front-
end) sets a custom HTTP header field [40] indicating either
low or high priority. After processing this request, it attaches
the same priority bits onto the further internal requests it
spawns and sends to its sidecar.
(2) Each sidecar, in turn, propagates the priority of an incom-
ing request by copying its priority header onto the associated
responses and outgoing requests. The sidecar knows which
outgoing requests map to which incoming ones because they
have the same global request ID (x-request-id [23]) which
is propagated to those requests by the application to enable
existing service mesh functionality.3
(3) To provide distinct service to different kinds of requests,
sidecars forward them to either a high or low priority pod
(in our case, front end forwards requests to either reviews
replica 1 or 2 depending on priority). We then prioritize
these flows’ packets. We use a very simple method in this
prototype. Specifically, we set Linux TC rules that direct
packets matching the pod’s IP address to be given nearly-
strict prioritization (up to 95% of bandwidth) in the kernel’s
outgoing packet queue on the sidecar container’s virtual
interface. We leave other optimizations to future work.

Results. Cross-layer prioritization significantly (≈ 1.5×)
improves the p50 and p99 response latency of the higher
priority latency-sensitive workloads (Fig. 4). This improve-
ment comes at the cost of degrading the performance of
the latency-insensitive workloads (less than 5% increase in
the p99 response latency) The absolute numbers, of course,
will depend on the workload distributions; this basic test
illustrates that significant improvements are possible.

3Service meshes use various custom HTTP header fields to communicate
with the app. For example, the distributed tracing feature uses suchmetadata
to tie together numerous trace spans (i.e., metadata about a request’s execu-
tion within one microservice instance) to create a distributed trace [23].

233

HotNets ’21, November 10–12, 2021, Virtual Event, United KingdomSachin Ashok, P. Brighten Godfrey, and Radhika Mittal

10 20 30 40 50
Requests Per Second (RPS)

0

100

200

300

400

500

HT
TP

 R
eq

ue
st

 L
at

en
cy

 (m
s)

w/o cross layer optimization (p50)
w/ cross layer optimization (p50)
w/o cross layer optimization (p99)
w/ cross layer optimization (p99)

Figure 4: Reduction in request latency from cross-
layer optimization.

5 DISCUSSION
Can’t all this just be implemented in the application?
In principle, yes, and this is true not only of our enhance-
ments, but also of the features of the service mesh itself. Ser-
vice meshes exist because app-based implementations place
a needless burden on developers, at best. Worse, per-app
implementations could result in inconsistent security poli-
cies, more frequent bugs, and missed opportunities. These
considerations are especially true of the directions we pro-
pose, which involve specialized networking knowledge (e.g.,
performance tradeoffs of TCP variants) outside the scope
of most app development teams. Cross-layer coordination
and other advanced functions don’t become easy in a service
mesh, but by modularizing the functionality and amortizing
the cost across many applications, they may become viable.
Lack of a single service mesh. The service mesh space
is somewhat fragmented, given the numerous open source
and commercial products. While this space is evolving, we
note that universal deployment is not needed for most of the
directions we propose. Also, standardized interfaces like the
Service Mesh Interface (SMI) project [12] are emerging.
Maturing cross-layer prioritization. Our prototype (§4)
can be extended, e.g., by coordinating management of other
resources beyond the network (i.e., compute and storage),
allowing the application to specify more fine-grained prefer-
ences, and leveraging other optimizations such as prioritized
request queuing and improved transport protocols.
Co-designingwithNetwork ServiceMeshes.ANetwork
Service Mesh (NSM) [10] is a complementary solution of-
fering control and configurability of L2/L3 functionality at
hosts, such as firewalls, VPN tunnels, and forwarding frames
(as opposed to the higher level functionality that service
meshes provide). Today, service meshes and NSMs both run
independently but a co-design could offer broader control.

6 RELATEDWORK
Service meshes bear similarity to virtualized networks [31]
which provide isolated environments for cloud tenants. Both
arguably form a network layer (Fig. 2), utilize SDN-style cen-
tralized control planes, and utilize host-based data planes.
Service meshes differ in that they communicate with apps
more closely via APIs, operate above the transport layer, and
are under the control of software developers (whereas net-
work virtualization is under the control of the cloud provider).
These properties directly influence the opportunities in §3.

Distributed stream processing systems (e.g. [1]) involve
directed acyclic graph of processing elements that continu-
ously process data. These elements are essentially microser-
vices, and streaming systems provide communication be-
tween them with some functionality that overlaps with ser-
vice meshes, like fault tolerance and load balance. In gen-
eral, stream processing and more recent distributed data
processing frameworks [41] may also be attractive locations
to implement some of the directions we proposed, but ser-
vice meshes have advantages in providing a more general
communication abstraction separated from the application.
One of the few papers viewing service meshes from the

perspective of network architecture is [3]. Observing that
service meshes can be viewed as an SDN at the application
layer, [3] sketched a “full stack SDN” wherein a single virtual
switch could process traffic at a range of protocol layers
L2-L7. Such a design could offer interesting opportunities
for implementing cross-layer optimizations, but is overall
complementary to the research directions we have discussed.

7 CONCLUSION
This paper makes the case that as modern cloud-native soft-
ware is becoming more like a network, the service mesh is
emerging as a distinct layer in the network stack, with new
challenges and opportunities. Our prototype demonstrates
a concrete example of leveraging these opportunities to im-
prove the response time of user requests in a system with
a mix of workloads. In closing, we note that even though
the “new action” that we highlight begins with changes in
software near the top of the stack, the implications of those
changes cut across layers, from the physical network to the
application – as do many of the specific open research di-
rections we outline. We therefore believe that networking
research has an impactful role to play that is all the more
exciting for its direct relevance to application needs.

Acknowledgements. We thank our shepherd, Anees
Shaikh, and the anonymous reviewers for their valuable feed-
back. This material is based upon work supported by Intel,
Facebook, and AG NIFA under Grant No. 2021-67021-34418.

234

Leveraging Service Meshes as a New Network Layer HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. 2005. The design of the
Borealis stream processing engine. In Cidr, Vol. 5. 277–289.

[2] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agar-
wal, David Shmoys, and Amin Vahdat. 2018. Sincronia: Near-Optimal
Network Design for Coflows. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM
’18). Association for Computing Machinery, New York, NY, USA, 16–29.
https://doi.org/10.1145/3230543.3230569

[3] Gianni Antichi and Gábor Rétvári. 2020. Full-Stack SDN: The Next Big
Challenge?. In Proceedings of the Symposium on SDN Research (SOSR
’20). Association for Computing Machinery, New York, NY, USA, 48–54.
https://doi.org/10.1145/3373360.3380834

[4] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance
analysis of cloud applications. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18). 405–417.

[5] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based
congestion control for the internet. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). 329–342.

[6] Samir Behara. 2019. Microservices Journey from Netflix OSS to Is-
tio Service Mesh. (2019). https://dzone.com/articles/microservices-
journey-from-netflix-oss-to-istio-se

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14).

[8] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A networking
abstraction for cluster applications. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. 31–36.

[9] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient
coflow scheduling with varys. In Proceedings of the 2014 ACM confer-
ence on SIGCOMM. 443–454.

[10] CNCF. 2021. Network Service Mesh. (2021). https://
networkservicemesh.io/

[11] CNCF. 2021. Open Service Mesh. (2021). https://openservicemesh.io
[12] CNCF. 2021. Service Mesh Interface. (2021). https://smi-spec.io
[13] Bryan Ford. 2007. Structured streams: a new transport abstraction. In

Proceedings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications. 361–372.

[14] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 3–18. https://doi.org/10.1145/3297858.3304013

[15] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. 2012. Re-
thinking end-to-end congestion control in software-defined networks.
In Proceedings of the 11th ACM Workshop on Hot Topics in networks.
61–66.

[16] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. MegaPipe: A New Programming Interface for Scalable Network
I/O. In 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12).

[17] HashiCorp. 2021. HashiCorp Consul. (2021). https://www.consul.io
[18] Red Hat. 2021. Red Hat OpenShift Service Mesh. (2021). https:

//www.openshift.com/learn/topics/service-mesh
[19] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finish-

ing Flows Quickly with Preemptive Scheduling. In ACM SIGCOMM.
[20] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vi-

jay Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving
high utilization with software-driven WAN. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. 15–26.

[21] JaehyunHwang,Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
2021. Rearchitecting Linux Storage Stack for 𝜇s Latency and High
Throughput. In OSDI.

[22] Istio. 2021. bookinfo. (2021). https://github.com/istio/istio/tree/
master/samples/bookinfo

[23] Istio. 2021. Distributed Tracing Overview. (2021). https://istio.io/
latest/docs/tasks/observability/distributed-tracing/overview/

[24] Istio. 2021. Istio. (2021). https://istio.io
[25] Istio. 2021. Istio Architecture. (2021). https://istio.io/latest/docs/ops/

deployment/architecture/
[26] Istio. 2021. Performance and scalability. https://istio.io/latest/docs/

ops/deployment/performance-and-scalability/. (June 2021).
[27] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon

Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. 2013. B4: Experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 3–14.

[28] Nathan Jay, Noga H. Rotman, P. Brighten Godfrey, Michael Schapira,
and Aviv Tamar. 2018. Internet Congestion Control via Deep Reinforce-
ment Learning. In NeurIPS Deep Reinforcement Learning Workshop.

[29] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kul-
shreshtha, Weifei Zeng, and Navindra Yadav. 2019. ExplainIt!–A declar-
ative root-cause analysis engine for time series data. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD).
333–348.

[30] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2017. Efficient
redundancy techniques for latency reduction in cloud systems. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS) 2, 2 (2017), 1–30.

[31] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram,
Ethan Jackson, et al. 2014. Network virtualization in multi-tenant dat-
acenters. In 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14). 203–216.

[32] Kubernetes. 2021. kind. (2021). https://kind.sigs.k8s.io/
[33] Kubernetes. 2021. Kubernetes. (2021). https://kubernetes.io/
[34] Aleksandar Kuzmanovic and Edward W Knightly. 2006. TCP-LP: low-

priority service via end-point congestion control. IEEE/ACM Transac-
tions on Networking 14, 4 (2006), 739–752.

[35] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the conference of the ACM special
interest group on data communication. 183–196.

[36] Frederic Lardinois. 2017. Google, IBM and Lyft launch Istio, an
open-source platform for managing and securing microservices. (May
2017). https://techcrunch.com/2017/05/24/google-ibm-and-lyft-
launch-istio-an-open-source-platform-for-managing-and-securing-
microservices/

[37] Linkerd. 2021. Linkerd. (2021). https://github.com/linkerd/linkerd2
[38] Bingzhe Liu, Ali Kheradmand, Matthew Caesar, and P. Brighten God-

frey. 2020. Towards Verified Self-Driving Infrastructure. In Nineteenth
ACM Workshop on Hot Topics in Networks (HotNets).

235

https://doi.org/10.1145/3230543.3230569
https://doi.org/10.1145/3373360.3380834
https://dzone.com/articles/microservices-journey-from-netflix-oss-to-istio-se
https://dzone.com/articles/microservices-journey-from-netflix-oss-to-istio-se
https://networkservicemesh.io/
https://networkservicemesh.io/
https://openservicemesh.io
https://smi-spec.io
https://doi.org/10.1145/3297858.3304013
https://www.consul.io
https://www.openshift.com/learn/topics/service-mesh
https://www.openshift.com/learn/topics/service-mesh
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://istio.io/latest/docs/tasks/observability/distributed-tracing/overview/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/overview/
https://istio.io
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://kind.sigs.k8s.io/
https://kubernetes.io/
https://techcrunch.com/2017/05/24/google-ibm-and-lyft-launch-istio-an-open-source-platform-for-managing-and-securing-microservices/
https://techcrunch.com/2017/05/24/google-ibm-and-lyft-launch-istio-an-open-source-platform-for-managing-and-securing-microservices/
https://techcrunch.com/2017/05/24/google-ibm-and-lyft-launch-istio-an-open-source-platform-for-managing-and-securing-microservices/
https://github.com/linkerd/linkerd2

HotNets ’21, November 10–12, 2021, Virtual Event, United KingdomSachin Ashok, P. Brighten Godfrey, and Radhika Mittal

[39] Tong Meng, Neta Rozen Schiff, P. Brighten Godfrey, and Michael
Schapira. 2020. Proteus: Scavenger Transport And Beyond. In ACM
SIGCOMM.

[40] Keith Moore. 1996. MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII Text. RFC 2047.
(Nov. 1996). https://doi.org/10.17487/RFC2047

[41] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {AI} applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 561–577.

[42] Larry Peterson and Bruce Davie. 2019. Computer Networks: A
Systems Approach, version 6.2-dev. Elsevier. https://github.com/
SystemsApproach/book

[43] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker.
2009. Extending Networking into the Virtualization Layer. In Proc. of
workshop on Hot Topics in Networks (HotNets-VIII).

[44] Matt Raney. 2016. What I Wish I Had Known Before Scaling Uber to
1000 Services. In GOTO Chicago. https://www.youtube.com/watch?
v=kb-m2fasdDY

[45] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2012. Low Extra
Delay Background Transport (LEDBAT). In RFC 6817.

[46] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, NickMcKeown, and Guru Parulkar. 2009. FlowVisor: A Network
Virtualization Layer. Technical Report. Deutsche Telekom Inc. R&D
Lab, Stanford, Nicira Networks.

[47] Gil Tene. 2019. Wrk2: a HTTP benchmarking tool based mostly on
wrk. (2019). https://github.com/giltene/wrk2

[48] VMware. 2021. Network Virtualization. (2021). https://www.vmware.
com/topics/glossary/content/network-virtualization

[49] VMware. 2021. VMware Tanzu Service Mesh. (2021). https://www.
vmware.com/products/tanzu-service-mesh.html

[50] Ashish Vulimiri, Brighten Godfrey, Radhika Mittal, Justine Sherry,
Sylvia Ratnasamy, and Scott Shenker. 2013. Low latency via redun-
dancy. In Proceedings of the ninth ACM conference on Emerging net-
working experiments and technologies. 283–294.

[51] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better Never than Late: Meeting Deadlines in Datacenter Net-
works. In Proceedings of the ACM SIGCOMM 2011 Conference (SIG-
COMM ’11). Association for Computing Machinery, New York, NY,
USA, 50–61. https://doi.org/10.1145/2018436.2018443

236

https://doi.org/10.17487/RFC2047
https://github.com/SystemsApproach/book
https://github.com/SystemsApproach/book
https://www.youtube.com/watch?v=kb-m2fasdDY
https://www.youtube.com/watch?v=kb-m2fasdDY
https://github.com/giltene/wrk2
https://www.vmware.com/topics/glossary/content/network-virtualization
https://www.vmware.com/topics/glossary/content/network-virtualization
https://www.vmware.com/products/tanzu-service-mesh.html
https://www.vmware.com/products/tanzu-service-mesh.html
https://doi.org/10.1145/2018436.2018443

	Abstract
	1 Introduction
	2 Background
	3 Opportunities and Challenges
	3.1 An architectural perspective
	3.2 Better visibility
	3.3 Better knowledge of application needs
	3.4 Easier evolvability
	3.5 Coordination with lower layers
	3.6 New challenges

	4 Case study: cross-layer prioritization
	4.1 Motivating Scenario
	4.2 Design
	4.3 Prototype

	5 Discussion
	6 Related Work
	7 Conclusion
	References

